StyleInV: A Temporal Style Modulated Inversion Network for
Unconditional Video Generation

Supplementary Materials

Yuhan Wang, Liming Jiang, Chen Change Loy
S-Lab, Nanyang Technological University

{yuhan004,

-

ANANNRL
BRI

N ECECECERErue
S S G S W W s W

G(wy) 0 1/4sec 1/2sec 1sec 5sec 1min 1 hour

Figure 1. Our StyleInV can generate arbitrarily long videos with
long-lasting content consistency.

Abstract

This document provides supplementary information that
is not elaborated in our main paper. In Section A, we
present some extra properties of our method that are not
elaborated on in the main paper. In Section B, we discuss
some limitations of our method and the broader impacts. In
Section C, we compare the computational cost of the base-
lines and our model. In Section D, we introduce the different
cropping strategies we applied to the DeeperForensics and
FaceForensics datasets. In Section E, we show the effect of
noise injection in StyleGAN models for video generation on
different datasets. In Section F, we list the details of our
model architecture and training setting. In Section G, we
give a brief introduction to each dataset we use.

A. Other Properties

Here we provide examples of other intriguing properties
that our method has.

Long video generation. Similar to [17], our network can
also generate arbitrarily long videos with decent quality.

liming002,

ccloy}l@ntu.edu.sg

The result is shown in Fig. 1 by extending the input times-
tamps to as large as one hour. Notably, our method can well
preserve the content consistency of the generated videos
without the motion collapse effect. Video examples are pro-
vided in the supplementary video and additional samples.

Temporal interpolation. Our method also supports tem-
poral interpolation to arbitrarily increase the frame rate of
generated videos. Fig. 2 shows the result of increasing the
FPS of a video from 30 to 60, by doubling the density of
timestamp sampling. More specifically, for a 128-frame,
30-FPS video, we input

t=0,1,2,---,127

to the StyleInV network, via Eq. (2) in the main paper. To
increase the FPS to 60, we only need to input

t=0,0.5,1,1.5,2,--- ,126.5,127,127.5

, and our model can generate smooth interpolations.

B. Limitations and Broader Impacts
B.1. Limitations

Inferior motion semantics on SkyTimelapse. As is men-
tioned in the main paper Section 4.1, the motion seman-
tics of our generated videos on SkyTimelapse are inferior to
those generated on other datasets. The reason of this may
be that the characteristics of the dataset are different.

For DeeperForensics [5], FaceForensics [13], and
TaiChi [16], the first frame largely determines the content
of all frames in a video, and a video is composed of the an-
imation process of the subject. This is consistent with the
characteristics of the inversion encoder’s focus on the sub-
ject. But for SkyTimelapse, two frames that are far apart of-
ten have little relation in content and the video is driven by
global motions. As our network is conditioned on the first
frame and predicts residuals w.r.t. the initial latent, the sky
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Figure 2. Temporal 1nterpolat10n. All the frames with red borders form a 128-frame, 30FPS video (~4.3 seconds). The frames without
borders are the interpolated ones that increase the FPS to 60 (still ~4.3 seconds). View the first row first from left to right, then view the

second row from left to right, then the third row, and so on.

videos generated by StyleInV conform to our model nature.
Please refer to the supplementary videos for visual results.

This nature makes our model outstanding in identity
preservation and can be better applied to applications like
animation. Addressing more dynamics and global motions
is an interesting improvement and future work for StyleInV.

The impact of dataset identity richness. The second lim-
itation of our model is that, when the identity scale of
the face video dataset is too small, it is difficult for us to
fully inherit all the excellent properties of an FFHQ pre-
trained StyleGAN2. This is why we develop our style

transfer model on a recently released large-scale face video
dataset CelebV-HQ [22], as it has identity diversity on the
same scale as FFHQ. Our video generation performance on
CelebV-HQ demonstrates the ability of our model to gener-
alize to larger face video datasets.

Image generation quality. The third limitation is that
the generation quality of StyleGAN determines the perfor-
mance upper bound of our method. In this work, the im-
ages generated by the StyleGAN2 models trained on Sky-
Timelapse and TaiChi [ | 6] have certain artifacts in the back-
ground. Especially for the TaiChi dataset, although our



Table 1. GPU memory consumption of different methods for one
video to be added into the batch. “A” means autoregressive while
“N-A” means non-autoregressive. “pSG” means employing a pre-
trained StyleGAN2. “mp” stands for mixed precision. “FpV”
stands for frames per video. “MpV” stands for memory per video,
reported in GB. “GPU Days” shows the total training time, aligned
on V100 GPU.

Method Type pSG mp FpV MpV GPU Days
MoCoGAN-HD A v 16 5.37 (7.54+9) x2
MoCoGAN-HD A v 32 1137 (7.5+18)x 2
DIGAN N-A 2 1.32 16
StyleGAN-V N-A v 3 1.20 8
Long-Video-GAN ~ N-A v - - 16 ++16 1
StyleInV N-A v v 4 2.85 7T5+1+9

approach has greatly surpassed state-of-the-art methods in
terms of quantitative metrics, the visual quality can be fur-
ther improved. The generated background and human body
both lack fine details and a sense of structure. That is to
say, for video generation on non-face video datasets, it re-
mains improvement space to develop a high-quality image
generator.

Model training. Finally, our approach is two-stage and thus
requires more training time compared to StyleGAN-V. Our
method requires 7.5 and 9 GPU days for each stage, respec-
tively, while StyleGAN-V is one stage and only requires 8
GPU days to train. Despite this, when finetuning hyperpa-
rameters on a dataset, our StyleInV is actually as efficient
as StyleGAN-V, because the image generator only needs to
be trained once and can be used for all StyleInV networks.
The two stages of our method are well separated. Besides,
our method has some unique properties, such as finetuning-
based style transfer.

B.2. Broader Impacts

We believe that the potential of StyleInV can be further
exploited. Our method can provide a natural solution to-
wards mega-pixel level video generation and StyleGAN-
based editing, and it might in return promote the research
of learning-based GAN inversion methods.

As for the negative side, StyleInV may ease the synthe-
sis of better-quality fake videos that might have potential
threats. We believe that this issue can be alleviated by de-
veloping more advanced falsified media detection methods
or contributing larger-scale and higher-quality forgery de-
tection datasets.

C. Computational Cost

The advantage of our method in computational cost
over autoregressive approaches is mainly reflected in the
GPU memory consumption during training. Table 1 shows
the comparison result. Our approach is the only non-
autoregressive method that employs a pretrained StyleGAN

generator. Our FpV is fixed and thus StyleInV can be
trained on arbitrarily long videos.

For the autoregressive MoCoGAN-HD, its memory con-
sumption for one video in the batch is proportional to the
clip length, making it difficult to be trained on long videos.
Meanwhile, its codebase is =~ 2 times slower than ours as it
does not support mixed precision training.

Compared to other non-autoregressive methods, our net-
work consumes a bit more memory due to an extra encoder
network and the initial frame included in sparse training.

For Long-Video-GAN, its model is split into two parts,
each of which requires finely setting the clip length accord-
ing to the output resolution. It is also the most expensive
model to train. Following its default setting, it takes 64
GPU Days to train the low-resolution model and 32 GPU
days to train the high-resolution model. Due to the limita-
tion of computing resources, we can only reduce the batch
size to have each part trained in 16 GPU days, with negligi-
ble performance degradation.

D. Cropping Strategies

In this section, we introduce the cropping strategies of
the FaceForensics dataset and the DeeperForensics dataset,
then explain the difference between them.

Algorithm 1 FaceForensics dataset cropping.

Il’lpllt: Tmins Ymin, Tmazr Ymazx
Olltplltl Tmins Ymins Tmazr Ymazx

W = Tmaz — Tmin

h = Ymazx — Ymin

if w < h then
A=h—w

i’maaz = Tmasz T A/2

gmin = Ymin

g’maw = Ymazx
else

A=w—h

Tmin = Tmin

Zrmaz = Tmaz

Qmin = Ymin — A/2
Umaz = Ymaz + A/2
end if

FaceForensics cropping. The FaceForensics [13] dataset
is composed of news broadcasting videos. Apart from raw
videos, it also releases labeled face masks for each frame.
TGAN-V2 [14] proposes to crop the dataset based on these
masks. For each frame, it first computes the minimum and
maximum values of the coordinates of the face region to
get, Timin, Ymin, Tmaz, Ymaz- Lhen this rectangle region is
padded to be a square, as is stated in Algorithm 1. Finally,



(a) raw frame

(b) FFHQ cropped

Figure 3. FFHQ cropping strategy on DeeperForensics dataset.
The landmarks are detected.

the selected square region is cropped and resized to the tar-
get resolution to become the cropped frame. This pipeline
is followed by all recent works [18, 17]. We also apply it
for the FaceForensics dataset pre-processing.

DeeperForensics cropping. The DeeperForensics [5]
dataset is composed of humans expressing given emotions.
As this dataset does not release the labeled face masks, we
turn to the unsupervised cropping strategy applied in FFHQ
dataset [7]. The cropping pipeline is shown in Fig. 3, where
the square region is determined by the detected landmarks,
then the square region is resized to the target resolution.

As this cropping strategy is based on the detected land-
marks, the stability of the landmark detection will greatly
affect the stability of the cropped videos. In the implemen-
tation, if each frame is simply detected by a landmark de-
tector and cropped, the cropped video will shake violently.
We first replace the landmark detector with a state-of-the-art
RetinaFace [3], then follow a stabilizing approach proposed
by [10]. We find that the stabilizing approach significantly
reduces the shaking effect. Here we briefly describe it.

The state-of-the-art landmark detectors input a bounding
box of the detected face and output the landmarks. We shift
the bounding box at a random distance and a random angle
multiple times. Then we use these bounding boxes to de-
tect the landmarks and average the results. This approach
statistically reduces the variance of the detected landmarks.

Difference. The FFHQ cropping strategy aligns the human
facial features in a fixed position. This property improves
the effect of finetuning-based style transfer. As the com-
mon datasets adopted for style transfer (e.g., Cartoon [11]
and Metfaces [6]) are also aligned by the FFHQ cropping
strategy, when the datasets are well aligned in structure,
the finetuning process can more naturally adjust the weights
of high-resolution layers upon fixed low-resolution layers.
Fig. 4 compares the finetuning-based style transfer result
of the parent model trained on CelebV-HQ [22] (where we
also apply the stabilized FFHQ cropping) and FaceForen-
sics. When the parent model is trained on a dataset (e.g.,
FaceForensics) which does not share the alignment of fine-
tuning dataset (e.g., Cartoon), the style transfer fails due to
the structure collapse.

(a) Parent model trained on FFHQ-cropped dataset
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(b) Parent model trained on non-FFHQ-cropped dataset

Figure 4. When the parent model is trained on an FFHQ-cropped
dataset (e.g., CelebV-HQ), finetuning-based style transfer pro-
duces promising results. Otherwise, a severe structure collapse
occurs.

E. Effect of Noise Injection

StyleGAN series [7, &, 6] proposes to inject noise vectors
at all layers of the generator for finer details in the back-
ground, hair, skin, etc. As reported by [7], the omission of
noise will lead to a “featureless painterly look”. However,
though designed on top of StyleGAN2, StyleGAN-V [17]
turns off the noise injection by default for training and in-
ference on all datasets. It also makes sense as the totally
randomized noise will bring content inconsistency among
frames.

In this work, we find that the effect of noise injection in
our system can be different on different datasets, positive or
negative. We first investigate its effect on the image gen-
erator in terms of the FID metric. On FaceForensics and
TaiChi datasets, the FID results of models with or without
noise are close. But on the SkyTimelapse dataset, the model
without noise injection has a much better FID result.

Then we look into how the noise in the StyleGAN2 gen-
erator affects the video generation quality. The first intuitive
observation is that we should apply constant noise for all
frames when synthesizing a video, instead of injecting ran-
dom noises for different frames. This is to avoid content
inconsistency. Then we compare the results of StyleInV
networks with or without noise. The results are exactly the
opposite for the first two datasets and the third dataset. On
FaceForensics and TaiChi datasets, injecting constant noise
improves the FVD results significantly, while on the Sky-
Timelapse dataset, the model without noise gives a much
better result.

We deduce that this is because there is no distinction be-
tween subject and background on the SkyTimelapse dataset,
making it difficult to clarify the way the injected noise
works. While on a dataset with clear subjects and back-
grounds, the injected noise effectively handles the genera-
tion of stochastic aspects, leaving the latent space focusing
on synthesizing the subject, which helps our StyleInV en-
coder find meaningful trajectories in the latent space.



Table 2. FID results of StyleGAN2 generator with or without noise
injection.

Method FaceForensics TaiChi  SkyTimelapse
with noise 10.19 38.1 15.05
w/o noise 9.52 38.37 11.80

Table 3. FVD results of StyleInV video generator with or without
noise injection in its StyleGAN2 image generator.

FaceForensics TaiChi SkyTimelapse
FVDis FVDi2s FVDig FVDias FVDig FVDigg

with noise ~ 47.88 103.63 18572 32890 115.68  266.67
w/onoise 10642 23893  326.60  583.60 77.04 194.25

Method

F. Implementation Details

In this section, we discuss the training of baselines and
our model, the architecture parameters, and the detailed
training setting.

Baseline details. MoCoGAN-HD [ 18] designs motion gen-
erators for a pretrained StyleGAN2 as we do. DIGAN [20]
and StyleGAN-V [17] train the entire framework as a whole
in a non-autoregressive manner. Long-Video-GAN [1] is
split into a low-resolution stage and a high-resolution stage.
All baselines are trained on 4 NVIDIA Tesla A100
GPUs. The StyleGAN2 generator for MoCoGAN-HD is
pretrained with all frames of the video dataset. Then the
motion generator is trained for 100 epochs following its
default setting. DIGAN models are trained under its de-
fault config for approximately four days. All StyleGAN-V
models are trained under its paper setting except on Deep-
erForensics dataset, for which we need to increase the R1 ~
parameter by 10 times to avoid training collapse.

Development and training. Our StyleInV is built upon the
official Py Torch implementation of StyleGAN2-ADA [6],
with which we enable the mixed precision setting for Style-
GAN?2 and significantly speed up the training. The Style-
GAN?2 image generator is firstly trained on all frames of the
video dataset with class-aware sampling [ 15, 21]. The noise
injection is turned off for SkyTimelapse dataset only. Then
we train an inversion encoder based on Fig. 3 and Eq. (1)
to initialize the convolution layers of the StyleInV encoder.
Finally, the entire StyleInV model is trained under the ob-
jective of Eq. (6). Three steps take roughly 7.5, 1, and 9
GPU days, respectively. All StyleInV models are trained
on 8 NVIDIA Tesla A100 GPUs. We apply an unbalanced
learning rate setting for the Adam optimizer [9], where the
learning rate for the StyleInV encoder and the discriminator
is 0.0001 and 0.002, respectively.

Model details. For the computation of temporal styles,
the sampled temporal noise for each timestamp is a 512-
dimensional vector. FFA-APE consists of two left-sided

1D-convolution layers with kernel size 6 and padding 5.
The length of the vector sequence remains unchanged af-
ter each 1D-convolution layer. The learnable interpolation
part is identical to that of StyleGAN-V [17]. The dimension
of positional encoding vy is 512. It is concatenated with the
initial frame latent wq and goes through two fully connected
layers to output the final temporal style, whose dimension
is also 512.

For the modulated inversion encoder, its convolution
blocks are identical to those in pSp inversion encoder [12],
which compose a ResNet-50 backbone [4]. The AdaIN lay-
ers are adopted from StarGAN-V2 [2], with residual con-
nection and variance normalization enabled. The AdaIN
layers do not down-sample the feature maps. A fully con-
nected layer is appended after the last adaptive average
pooling layer to output a 512-dimensional vector, which is
the residual w.r.t. wq by definition.

For the discriminator design, we simply follow the
model architecture of the StyleGAN-V discriminator. We
did not delve into this part. The first frame used in the dis-
criminator is G(wyp), instead of G (StyleInV (wq,0))

Training details. For hyper-parameters of FFA-ST, we set
Ar, = 10 and A,y = 0.05 for all four datasets. We ap-
ply adaptive differentiable augmentation [6], where the aug-
mentation operation is always identical for all frames in a
video. We use the bgc augmentation pipe. The augmenta-
tion target is 0.6. The R1 ~ parameter for r1 regularization
is 1. The learning rate for the modulated inversion encoder
is 0.0001. The learning rate for the discriminator is 0.002.

For the inversion encoder training which is used for
weight initialization, we follow all the training settings de-
scribed in the pSp paper [12], except that the ID loss is
turned off for TaiChi and SkyTimelapse datasets.

For the finetuning-based style transfer, we fix the map-
ping network and synthesis layers whose resolution is no
larger than 32. The training setting is identical to that of the
parent model. The finetuning process takes only 4-8 GPU
hours.

G. Dataset Details

We provide dataset details in this section.

DeeperForensics [5]. This dataset is composed of 100
identities expressing eight emotions (angry, contempt, dis-
gust, fear, happy, neutral, sad, and surprise). The videos
are collected under nine lighting conditions and seven cam-
era positions, among which we only select the condition
where the lighting is uniform and the camera shoots from
the straight front. All videos are cropped to 256 resolution
following the stabilized FFHQ cropping strategy which is
described in Section D. The entire dataset has 732 videos of
194,770 frames.



FaceForensics [13]. We follow the same cropping strategy
of StyleGAN-V to process and organize the dataset. The
entire dataset has 704 videos of 364,017 frames.

SkyTimelapse [19]. StyleGAN-V releases its SkyTime-
lapse 2562 dataset |. We directly use it for our experiments.
The entire dataset has 2,114 videos of 1,168,920 frames.
Notably, some videos in SkyTimelapse are hours long. We
use class-aware sampling in both training and metric calcu-
lation, following StyleGAN-V.

TaiChi [16]. We follow the link > provided by DIGAN to
download and crop the dataset. The original dataset reso-
lution after processing is 256, so we directly use it for all
experiments. Notably, some of the video links had expired
when we were processing this dataset, thus the composition
of our dataset may be slightly different from previous work.
The entire dataset has 3,103 videos of 951,533 frames.

CelebV-HQ [22]. We download the video dataset using the
link for processed CelebV-HQ videos * and crop the dataset
to 256 resolution with stabilized FFHQ cropping. The entire
dataset has 35663 videos.
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