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A. Baseline Method Details

We compare with several baseline methods on nuScenes
dataset, which can be roughly classified as four categories:
Depth estimation: SurroundDepth [13], AdaBins [2],
NeWCRFs [14]. Since SurroundDepth method is multi-
camera self-supervised method, we use depth groundtruth
to supervise the network along with self-supervised photo-
metric loss. AdaBins [2] and NeWCRFs [14] are the state-
of-the-art depth estimation methods both in outdoor and
indoor scenes. To implement these two methods, we use
their official released code with the dataloader in Surround-
Depth. The depth results are fused by the TSDF fusion al-
gorithm [5, 11] with the voxel size 0.5m, which is same to
our method.
3D scene reconstruction: Atlas [10] and Transformerfu-
sion [3]. These two methods are state-of-the-art indoor
scene reconstruction methods. We use our dense occupancy
groundtruth to supervise them instead of tsdf ground truth.
To fairly compare, we also adopt ResNet101-DCN [7, 6]
with the initial weight from FCOS3D [12] as the backbone
to extract image features.
Occupancy reconstruction: MonoScene [4] and TPV-
Former [8]. To extend MonoScene to multi-camera setting,
we project occupancy labels to each camera’s coordinate
and the shape of each camera’s prediction is (128, 104, 16)
with 0.5m voxel size. We fuse multi-camera results in Li-
DAR coordinate with camera extrinsics. The final result has
the same shape and voxel size with ours. For TPVFormer,
the resolution is set as 200x200x16 and the feature dimen-
sion is 64.
BEV perception: BEVFormer [9]. We use the full-
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Acc meanp∈P (minp∗∈P∗ ||p− p∗||)
Comp meanp∗∈P∗(minp∈P ||p− p∗||)
Prec meanp∈P (minp∗∈P∗ ||p− p∗|| < 0.5)
Recal meanp∗∈P∗(minp∈P ||p− p∗|| < 0.5)
CD Acc + Comp
F-score (2× Prec × Recal)/(Prec + Recal)

Table 1. Evaluation metrics for 3D scene reconstruction. p and p∗

are the predicted and ground truth point clouds.

resolution 200x200 BEV features. To lift BEV features to
the 3D space, we split 256 dimensions BEV features as 16
grids and the feature of each grid has 16 dimensions. Then
we adopt a 3D encoder-decoder network [10] as a segmen-
tation head to predict occupancy. Following the setting in
TPVFormer, we employ both cross entropy loss and lovasz-
softmax [1] as the supervision signals.

B. More Visualizations
Figure 1 shows the qualitative comparison with other

methods. We can see that our predictions are more accurate
and denser. We also provide some video demos in the ma-
terial. Specifically, ’demo-nuscenes’ shows the results on
nuScenes validation set and ’demo-gt’ visualizes our gen-
erated groundtruth. ’demo-comparison’ illustrates the com-
parison with other methods and ’demo-wild’ shows the oc-
cupancy predictions on Beijing street (trained on nuScenes
training set).
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Figure 1. Qualitaative comparison on nuScenes validation set. Our mrthod can predict more accurate and denser occupancy. Better viewed
when zoomed in.
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