Spatial-Aware Token for Weakly Supervised Object Localization
(Supplementary Materials)

Pingyu Wu!, Wei Zhai''", Yang Cao'?, Jiebo Luo?, Zheng-Jun Zha'
! University of Science and Technology of China
3 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

1. Ablation Study
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We fix the whole network to 12 blocks and adjust the number of

spatial aware transformer blocks, denoted as N. As shown in Table 1, the best results are achieved when N is set to 3, which
indicates that fusing the localization maps M learned from different blocks is helpful to obtain a complete localization result.
However, when N is too large, it increases the optimization difficulty of the normalization loss thus reducing the localization

performance.

N CUB-200 ImageNet
Top-1Cls Top-1Loc GT-k. Loc | Top-1Cls Top-1Loc GT-k. Loc
1 81.45 79.82 97.48 78.16 59.04 71.84
2 81.62 80.17 98.02 78.33 59.90 72.77
3 82.05 80.96 98.45 78.41 60.15 73.13
4 81.93 80.76 98.36 78.23 59.87 72.92
5 80.69 78.75 97.12 78.16 58.67 71.41

Table 1. Number of spatial aware transformer blocks. We select the 10-th block as the spatial aware transformer block when N = 1, and
the 10-th and 11-th blocks when N=2. When N > 2, the last N blocks are adopted as spatial aware transformer blocks.

Dot position. We explore the impact of the position of the dot product in the spatial-query attention module, as shown
in Table 2. Quantitative experiments show that performing the dot product before softmax will reduce the performance of
classification and localization, mainly because the exponential form in softmax makes the semantic prediction M’ learning
insufficient. Therefore, the dot product after the softmax function enables semantic prediction M' to better capture the
localization knowledge from the self-attention mechanism.

Dot Position CUB-200 ImageNet
Top-1Cls Top-1Loc GT-k. Loc | Top-1 Cls Top-1Loc GT-k. Loc
Before softmax 81.67 80.39 98.19 77.78 59.57 72.85
After softmax 82.05 80.96 98.45 78.41 60.15 73.13

Table 2. Dot position. Ablation experiments on the position of the dot product in the spatial-query attention module.

2. Analysis

Class token w.r.t. spatial-aware token.

To analyze the differences between spatial-aware token and class token, we
implement the exploratory experiment as shown in Table 3. From Table 3 (a), it can be analyzed that sharing the same token
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between class token and spatial token will bring optimization conflict between classification and localization tasks, thus
decreasing both classification and localization performance. In addition, as illustrated in Table 3 (b), using separate tokens
and initializing the weights of the spatial token to the pre-trained weights of class token also results in reduced localization
accuracy, suggesting that the information learned by the spatial token and class token are significantly different. As a result,
it is necessary to learn a separate spatial token from scratch.

Initial Weights Cls Acc. Loc Acc.
Class token Spatial token | Top-1 Top-5 | Top-1 Top-5 GT-k.
(a) Pre-trained (shared) 77.83 9392 | 58.31 68.35 71.08

(b) | Pre-trained Pre-trained 78.34 94,14 | 59.81 69.96 72.60
(c) | Pre-trained Random initial | 78.41 94.46 | 60.15 70.52 73.13

Table 3. Class token w.r.t. spatial-aware token. (a) Class token and spatial token share the same token, and its initial weights are the
pre-trained weights of class token. (b) Class token and spatial token use separate tokens, and their initial weights are the pre-trained weights
of class token. (c) Class token and spatial token use separate tokens, where the initial weights of the spatial token are randomly initialized.
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Figure 1. Comparison between L., and L,,orn,. (a) Visual comparison of SAT w/ L, and SAT w/ L,orm on local connectivity. (b)
Visual comparison of SAT w/ L., and SAT W/ Ly,0rm on background uncertainty. (c) Loss-Input value curves for different loss functions.

Normalization loss w.r.t. weighed entropy loss. We compare the weighed entropy loss (£,,) in ORNet [21] with our
proposed normalization 10ss (L, ) in Table 4. Both losses aim to provide pixel-level supervision to increase the distinction
between foreground and background of the localization map, but the effects are somewhat different, as shown in Fig. 1. 1)
The proposed L, includes a gaussian filtering operation to incorporate the values of adjacent patches in the calculation
of the loss, thus encouraging the local continuity of the localization map. As illustrated in Fig. 1 (a), the localization map
generated by SAT w/ L,,,,, has better connectivity compared to SAT w/ L,,. 2) Fig. 1 (c) shows the loss curves of the two
loss functions versus the input values. Compared to L,,orm, L is already close to zero at input values of 0.2 or 0.8, which
indicates that £,, allows the background to be activated with low response, as presented in Fig. 1 (b). While using a higher
visualization threshold to filter out the background region will reduce the connectivity of localization map generated by SAT
w/ L,, in Fig. 1 (a), resulting in decreased localization performance. Therefore, L., o, is more suitable for the proposed SAT
and SAT w/ L,,o,-m achieves the best results in Table 4.

Cls Acc. Loc Acc.
Top-1 Top-5 | Top-1 Top-5 GT-k.
(a) | SAT w/ L, 81.64 9522 | 78.68 91.82 96.27
(b) | SAT W/ L,0rm | 82.05 95.56 | 80.96 94.13 98.45

Table 4. Normalization loss w.r.t. weighed entropy loss. The accuracy of our method using normalization loss L,orm and weighed
entropy L., loss on CUB-200, respectively.

Method

Batch area loss w.r.t. area loss.  In Table 5, we compare the proposed batch area loss Ly, with the area loss Lgeq
in FPM-based [13, 20, 21] on CUB-200. Experiments show that £,..., cannot be well applied to SAT either in one-stage or
two-stage. This is because the generation and learning of the localization map in the SAT occur in the attention module, while
in transformer, the token sequence input to the attention module can be propagated to the next layer by the skip-connection,
which makes the area loss not suitable for SAT. For this reason, we propose batch area loss, which not only provides a



Cls Acc. Loc Acc.
Top-1 Top-5 | Top-1 Top-5 GT-k.
(a) | SAT w/ L4cq | One-stage | 79.39 95.41 | 25.68 32.83 34.92
(b) | SAT W/ Lreq | two-stage | 80.19 94.51 | 57.01 66.79 70.54
(c) | SAT w/ Ly, | one-stage | 82.05 95.56 | 80.96 94.13 98.45

Method Stage

(a) (b) (©
Table 5. batch area loss w.r.t. area loss. One-stage indicates training the model in an end-to-end manner. Two-stage means first training
the network with classification losses only. Then the weights of the backbone are fixed and only the spatial token is trained with all losses.

sparse area supervision for the localization maps, but also guarantees the tolerance of area variation between instances. The
visualization results and accuracy verify the effectiveness of the proposed batch area loss.

3. Performance

Tunable parameters. = We detail the tunable parameters for freezing different parts in Table 6, where we follow the
freezing settings of Table 8 in the main text. When freezing 81% of the parameters, only 1.4M parameters are tunable on the
backbone network, which is 6% of the parameters in the entire backbone network (21.7M). In this case, SAT still exceeds
the existing transformer-based approaches in both classification and localization with only 4.8M tunable parameters , which
verifies the efficiency and effectiveness of the proposed method.

Methods Frozen Rate Tunable Parameters Inference Accuracy
Backbone Head | FLOPs Parameters | Top-1 Cls Top-1Loc GT-k. Loc

TS-CAM [5] 0% 21.7M 3.4M 4.9G 25.1M 74.30 53.40 67.60
LCTR [2] 0% 21.7M 15.1M 7.2G 36.8M 77.10 56.10 68.70
SCM [1] 0% 21.7M 3.4M 4.9G 25.1M 76.70 56.10 68.80
SAT (e) 81% 1.4M 3.4M 4.9G 25.1M 77.79 58.29 71.14
SAT (d) 64% 5.8M 3.4M 4.9G 25.1M 78.23 59.37 72.20
SAT (¢) 42% 11.1M 3.4M 4.9G 25.1M 78.24 59.97 72.88
SAT (b) 21% 16.4M 3.4M 4.9G 25.1M 78.12 60.00 73.10
SAT (a) 0% 21.7M 3.4M 4.9G 25.1M 78.41 60.15 73.13

Table 6. Tunable parameters. The frozen parts are as follows: (a) None. (b) Attention layer of transformer blocks. (c) MLP layer
of transformer blocks. (d) Transformer blocks. (e) Position embedding, projection, transformer blocks, and MLP layer of spatial aware
transformer blocks.

Fine-grained.  To further validate the effectiveness of SAT, we compare the accuracy of SAT with TS-CAM [5] on
three fine-grained datasets, including Standford Dogs [7], FGVC-Aircraft [12], and Standford Cars [9], as shown in Table 7.
On Standford Dogs, we achieve significant gains of 17.83% and 17.47% on Top-1 Loc and GT-known Loc compared to TS-
CAM. Besides, we obtain 98.80% and 99.76 % GT-known Loc on FGVC-Aircraft and Standford Cars, exceeding TS-CAM
by 2.07% and 4.14%, respectively. Fig. 2 illustrates several visual comparisons between TS-CAM and our proposed method
on three fine-grained datasets. Compared to TS-CAM, the localization results generated by the proposed method have better
visualization and more complete coverage of the object.

Cls Acc Loc Acc

Dataset Method Top-1 Top-5 Top-1 Top-5 GT-known

Standford Dog [7] | TS.CAM 81.24 97.25 65.14 77.19 78.67
SAT | 86.03 (+4.79) 98.61 (+1.36) | 82.97 (+17.83) 94.92 (+17.73) 96.14 (+17.47)

. TS-CAM 81.28 95.41 79.69 93.22 96.73
FGVC-Aireraft [121 g A1 | 82,66 (+1.38) 95.89 (+0.48) | 82.18 (+2.49)  95.23(+2.01)  98.80 (+2.07)

Standford Cars [0] | TSCAM 83.16 96.48 79.74 92.43 95.62
SAT | 85.92(+2.76) 97.55(+1.07) | 85.79 (+5.95) 97.35 (+4.98)  99.76 (+4.14)

Table 7. Fine-grained. Comparison with TS-CAM method on three fine-grained datasets.

Error analysis.  To further analyze the effect of the proposed method, we count all the localization errors (90 images)
on CUB-200 [17] test set (5,794 images) and classify them according to the error causes. As listed in Table 8, we classify the



error causes into the following six categories, including object occlusion (36 images), localization more (28 images), water
reflection (18 images), localization part (5 images), multiple instances (2 images), label error (1 image). Specifically,
object occlusion causes the object to be split into two or more parts, resulting in incomplete localization results, as shown in
Table 8. Localization more is often due to the positive effect of co-occurrence context on the classification network, leading
to localizing confounding background regions. In addition, water reflection is an inherent challenge for weakly supervised
object localization, and it is difficult to achieve correct localization results with only image-level labels. In this way, to achieve
better localization performance, future work needs to take more into account the interaction between objects and background
to overcome the problems of object occlusion and localization more.

Total Errors | Object Occlusion Localization More Water Reflection Localization Part Multiple Instances Label Error
90 18 5 2 1

Predict

Image

Predict

Image

Predict

Table 8. Localization error analysis on CUB-200.

CUB-200 Loc Acc. ImageNet Loc Acc.
Top-1 Top-5 | GT-k. | Top-1 Top-5 | GT-k.
PSOL* 72.45% | 87.48* | 90.00 | 54.71* | 63.54* | 65.44
SPOL* 80.73* | 93.76* | 96.46 | 59.89* | 67.68* | 69.02

SAT 80.96 94.13 98.45 60.15 70.52 73.13

Table 9. Reproducing the convnet-based methods on the Deit-S. * indicates the reproduced results.

Methods




Comparison with convnet-based methods. = We replace the classifiers of PSOL [24] and SPOL [18] with Deit-S [16]
backbone and report the reproduced localization results in the Table 9. Compared to the above methods, SAT still achieves
the best localization results on both benchmarks.

Main results. In Table 10, we show the more complete comparison results with other SOTA methods on CUB-200 [17]
and ImageNet [15]. It can be seen that the proposed SAT achieves the best performance on both datasets in terms of Top-
1/Top-5/GT-known Loc three localization metrics.

Visual Results.  More visualizations on Openlmages [3], CUB-200 [17], and ImageNet [15] datasets are shown in
Fig. 3, Fig. 4, and Fig. 5, respectively. It can be noted that SAT demonstrates robust localization ability in various challenging
scenarios, including different scaled objects, complex environments, and object occlusions.

CUB-200 [17] Loc Acc. ImageNet [15] Loc Acc.
Methods Venue Backbone Top-1 Top-5 | GT-known | Top-1 Top-5 GT-known
CAM [28] CVPR16 VGG16 41.06 50.66 55.10 42.80 54.86 59.00
ACoL [25] CVPR18 VGG16 45.92 56.51 62.96 45.83 59.43 62.96
ADL [4] CVPR19 VGG16 52.36 — 75.41 44.92 — —
DANet [23] ICCV19 VGG16 52.52 61.96 67.70 — — —
12C [27] ECCV20 VGG16 55.99 68.34 — 4741 58.51 63.90
MEIL [11] CVPR20 VGG16 57.46 — 73.84 46.81 — -
SLT [6] CVPR21 VGG16 67.80 - 87.60 51.20 62.40 67.20
ORNet [21] ICCVv21 VGG16 67.73 80.77 86.20 52.05 63.94 68.27
BAS [20] CVPR22 VGG16 71.33 85.33 91.07 52.96 65.41 69.64
Kim et al. [8] CVPR22 VGG16 70.83 88.07 93.17 49.94 63.25 68.92
CREAM [22] CVPR22 VGG16 70.44 85.67 90.98 52.37 64.20 68.32
CAM [28] CVPR16 InceptionV3 41.06 50.66 55.10 46.29 58.19 62.68
SPG [26] ECCV18 InceptionV3 46.64 57.72 — 48.60 60.00 64.69
DANet [23] ICCV19 InceptionV3 49.45 60.46 67.03 47.53 58.28 —
12C [27] ECCV20 InceptionV3 55.99 68.34 72.60 53.11 64.13 68.50
GCNet [10] ECCV20 InceptionV3 58.58 71.00 75.30 49.06 58.09 .
SPA [14] CVPR21 InceptionV3 53.59 66.50 72.14 52.73 64.27 68.33
FAM [13] ICCcv21 InceptionV3 70.67 - 87.25 55.24 — 68.62
CREAM [22] CVPR22 InceptionV3 71.76 86.37 90.43 56.07 66.19 69.03
BAS [20] CVPR22 InceptionV3 73.29 86.31 92.24 58.51 69.00 71.93
BagCAMs [29] ECCV22 InceptionV3 60.07 - 89.78 53.87 — 71.02
CAM [28] CVPR16 ResNet50 46.71 54.44 57.35 38.99 49.47 51.86
ADL [4] CVPR19 ResNet50 62.29 - - 48.53 — —
12C [27] ECCV20 ResNet50 - — — 51.83 64.60 68.50
PSOL [24] CVPR20 ResNet50 70.68 86.64 90.00 53.98 63.08 65.44
FAM [13] ICCcv21 ResNet50 73.74 - 85.73 54.46 — 64.56
SPOL [18] CVPR21 ResNet50 80.12 93.44 96.46 59.14 67.15 69.02
DA-WSOL [30] CVPR22 ResNet50 66.65 — 81.83 55.84 - 70.27
BAS [20] CVPR22 ResNet50 77.25 90.08 95.13 57.18 68.44 71.77
Kim et al. [8] CVPR22 ResNet50 73.16 86.68 91.60 53.76 65.75 69.89
CREAM [22] CVPR22 ResNet50 76.03 — 89.88 55.66 — 69.31
BagCAMs [29] ECCV22 ResNet50 69.67 - 94.01 44.24 — 72.08
ISIC [19] ECCV22 ResNet50 80.68 94.08 97.32 59.61 67.84 70.01
TS-CAM [5] ICCcv21 Deit-S 71.30 83.80 87.70 53.40 64.30 67.60
LCTR [2] AAAI22 Deit-S 79.20 89.90 92.40 56.10 65.80 68.70
SCM [1] ECCV22 Deit-S 76.40 91.60 96.60 56.10 66.40 68.80
SAT (ours) This Work Deit-S 80.96 94.13 98.45 60.15 70.52 73.13

Table 10. Comparison with state-of-the-art methods. The best results are highlighted in bold, second are underlined.
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Figure 3. Visualization of the localization results on Openlmages [3].



Figure 4. Visualization of the localization results on CUB-200 [15].



Figure 5. Visualization of the localization results on ImageNet [17].
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