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1. Evaluation on Real-world SR
We train and validate our DiffIRS2 on real-world SR us-

ing the same settings of Real-ESRGAN [15]. Specifically,
we adopt the same loss functions of Real-ESRGAN [16],
which further introduce perceptual loss and adversarial loss
to the basic L1 loss. We set the learning rate of the KDSRT

to 2× 10−4. We further validate the effectiveness of KDSR
on Real-World datasets. For optimization, we use Adam
with β1 = 0.9, β2 = 0.99. In both two stages of training,
we set the batch size to 64, with the input patch size being
64. We evaluate all methods on the dataset provided in the
challenge of Real-World Super-Resolution: NTIRE2020
Track1 and Tracks [9]. In addition, we also validate our
DiffIR on RealSRSet [2]. Since NTIRE2020 Track1 and
RealSRSet datasets provide a paired validation set, we use
the LPIPS [22], DISTS [4], and PSNR for the evaluation.

The quantitative results are shown in Tab. 1. We can
see that DiffIRS2 outperforms SOTA real-world SR method
KDSRS-GAN on LPIPS, DISTS, and PSNR, consuming
fewer computational costs. In addition, we can see that
DiffIRS2 outperforms classic real-world SR method Real-
ESRGAN on LPIPS, DISTS, and PSNR, only consuming
its 63% Mult-Adds. Furthermore, compared with DM-
based LDM [11], DiffIRS2 achieve much better perfor-
mance consuming only 2% Mult-Adds.

We also visualize the results on NTIRE2020 Track2,
which was captured with smartphones. The qualitative re-
sults are shown in Fig. 1. We can see that DiffIRS2 achieves
the best performance.

2. Algorithm
The algorithm of DiffIR2 training is summarized in

Alg. 1. The algorithm of DiffIR2 inference is summarized
in Alg. 2.

3. More Training Details on Inpainting
We train our DiffIR for inpainting using the same loss

functions of LaMa [12], which further introduce multiple
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perceptual losses and adversarial loss to the basic L1 loss.
For our experiments on image-inpainting in the paper

Sec. 5.2, we used the code of LaMa [12] to generate syn-
thetic masks. In training, we adopt the Adam optimizer with
learning rates 0.0002 and 0.0001 for DiffIR and discrim-
inator networks, respectively. All models are trained for
1M iterations with a batch size of 30. In addition, we use
random crops of size 256 × 256 to train DiffIR on Places
and CelebA-HQ. In testing, we use a fixed set of 2k val-
idation and 30k testing samples from CelebA-HQ [5] and
Places [23]. Moreover, we validate DiffIRS2 on crops of
size 512 × 512 and 256 × 256 on Places and CelebA-HQ
validation datasets, respectively.

4. More Training Details on SR
Compared with DIRformer for other IR tasks, we add a

×4 upsampling network [16] at the end of DIRformer for
super-resolution (SR). We train our DiffIR for SR using the
same loss functions of ESRGAN [16], which further intro-
duce perceptual loss and adversarial loss to the basic L1

loss.
We train DiffIR for 1M iterations with a batch size of 64.

In addition, we use random crops of size 256× 256 to train
DiffIR on DIV2K [1] (800 images) and Flickr2K [13] (2650
images) datasets for 4× super-resolution. We train our Dif-
fIR using Adam optimizer with learning rates 0.0002 and
0.0001 for DiffIR and discriminator networks, respectively.

5. More Training Details on deblurring
Following previous works in single image motion de-

blurring [3, 19, 18], we train our DiffIR only using L1

loss for fair comparisons. We train DiffIR for 300K iter-
ations with the initial learning rate 2−4 gradually reduced
to 1−6 with the cosine annealing [7]. Following previous
work [18], we progressively increase patch size and de-
crease batch size. Specifically, we start training with patch
size 128 × 128 and batch size 64. The patch size and
batch size pairs are updated to [(160 × 160, 40), (192 ×
192, 32), (256 × 256, 16), (320 × 320, 8), (384 × 384, 8)]
at iterations [92K, 156K, 204K, 240K, 276K].



Table 1. 4× SR quantitative comparison on real-world SR competition benchmarks. The Mult-Adds are computed based on an LR size of
256 × 256. Best and second best performance are marked in bold and underlined, respectively. The bottom two methods marked in gray
adopt the diffusion model.

Methods Mult-Adds (T)
RealSRSet [2] NTIRE2020 Track1 [9]

LPIPS↓ DISTS↓ PSNR↑ LPIPS↓ DISTS↓ PSNR↑
BSRGAN [21] 1.18 0.3648 0.1676 26.90 0.3691 0.1368 26.75
Real-ESRGAN [15] 1.18 0.3629 0.1609 26.07 0.3471 0.1326 26.40
KDSRs-GAN [17] 0.86 0.3610 0.1627 27.18 0.3198 0.1252 27.12
LDM [11] 37.25 0.4369 0.1982 26.37 0.4763 0.1844 25.68
DiffIRS2 (Ours) 0.74 0.3527 0.1588 27.65 0.3088 0.1131 27.31

Algorithm 1 DiffIRS2 Training
Input: Trained DiffIRS1 (including CPENS1 and DIRformer), βt(t ∈ [1, T ]).
Output: Trained DiffIRS2.

1: Init: αt = 1− βt, ᾱT =
∏T

i=0 αi.
2: Init: The DIRformer of DiffIRS2 copies the parameters of trained DiffIRS1.
3: for ILQ, IGT do
4: Z = CPENS1(PixelUnshuffle(Concat(IGT , ILQ))). (paper Eq. (5))
5: Diffusion Process:
6: We sample ZT by q (ZT | Z) = N (ZT ;

√
ᾱTZ, (1− ᾱT ) I) (i.e., diffusion process. paper Eq. (10))

7: Reverse Process:
8: ẐT = ZT

9: D = CPENS2(PixelUnshuffle(ILQ)) (paper Eq. (12))
10: for t = T to 1 do
11: Ẑt−1 = 1√

αt

(
Ẑt − ϵθ(Concat(Ẑt, t,D)) 1−αt√

1−ᾱt

)
(paper Eq. (11))

12: end for
13: Ẑ = Ẑ0

14: ÎHQ = DIRformer(ILQ, Ẑ)
15: Calculate Ldiff loss (paper Eq. (13)).
16: end for
17: Output the trained model DiffIRS2.

6. More Visual Comparisons on Inpainting
In this section, we provide more qualitative compar-

isons between our DiffIRS2 and SOTA inpainting methods
(ICT [14], LaMa [12], and RePaint [8]). The results are
shown in Fig 2. We can observe that our DiffIRS2 can
produce more realistic and reasonable structures and details
than other competitive inpainting methods.

7. More Visual Comparisons on SR
In this section, we provide more qualitative comparisons

between our DiffIRS2 and SOTA GAN-based SR meth-
ods. The results are shown in Figs 3 and 4. Our DiffIRS2

achieves the best visual quality containing more realistic de-
tails.

8. More Visual Comparisons on Deblurring
In this section, we provide more qualitative comparisons

between our DiffIRS2 and SOTA image motion deblurring

methods. The results are shown in Fig 5. Our DiffIRS2 has
the best visual quality containing more realistic details close
to corresponding HQ images.

References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In
CVPRW, 2017. 1

[2] Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei
Zhang. Toward real-world single image super-resolution: A
new benchmark and a new model. In ICCV, 2019. 1, 2

[3] Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung,
and Sung-Jea Ko. Rethinking coarse-to-fine approach in sin-
gle image deblurring. In ICCV, 2021. 1

[4] Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli.
Image quality assessment: Unifying structure and texture
similarity. TPAMI, 2020. 1

[5] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017. 1



Algorithm 2 DiffIRS2 Inference
Input: Trained DiffIRS2 (including CPENS2 and DIRformer), βt(t ∈ [1, T ]), LQ images ILQ.
Output: Restored HQ images ÎHQ.

1: Init: αt = 1− βt, ᾱT =
∏T

i=0 αi.
2: Reverse Process:
3: Sample ẐT ∼ N (0, 1)
4: D = CPENS2(PixelUnshuffle(ILQ)) (paper Eq. (12))
5: for t = T to 1 do
6: Ẑt−1 = 1√

αt

(
Ẑt − ϵθ(Concat(Ẑt, t,D)) 1−αt√

1−ᾱt

)
(paper Eq. (11))

7: end for
8: Ẑ = Ẑ0

9: ÎHQ = DIRformer(ILQ, Ẑ)

10: Output restored HQ images ÎHQ.
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Figure 1. Visual comparison of 4× real-world super-resolution methods. Zoom-in for better details.
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Figure 2. More visual comparisons of inpainting methods. Zoom-in for better details.
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Figure 3. Visual comparison of 4× image super-resolution methods. Zoom-in for better details.
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Figure 4. Visual comparison of 4× image super-resolution methods. Zoom-in for better details.
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Figure 5. Visual comparison of single image motion deblurring methods. Zoom-in for better details.


