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Table I: Network and training details

Network #Params Steps Training time

ImageNet Gu 422M 1M ∼ 11.1 Days
ImageNet Gc 422M 500K ∼ 5.73 Days
ImageNet Gsr 105M 200K ∼ 0.54 Days
SDIP Dogs Gu 105M 500K ∼ 1.29 Days
SDIP Dogs Gc 105M 300K ∼ 0.82 Days
SDIP Dogs Gsr 105M 200K ∼ 0.54 Days

SDIP Elephants Gu 105M 300K ∼ 0.77 Days
SDIP Elephants Gc 105M 300K ∼ 0.82 Days
SDIP Elephants Gsr 105M 200K ∼ 0.54 Days

LSUN Horses Gu 105M 300K ∼ 0.77 Days
LSUN Horses Gc 105M 300K ∼ 0.82 Days
LSUN Horses Gsr 105M 200K ∼ 0.54 Days

A. More Training Details

The network architecture of our method is adopted from
ADM [2] with necessary modifications to support our task.
Specifically, for the unconditional diffusion model Gu, the
first convolution layer’s input channel and the last convolu-
tion layer’s output channel are enlarged from 3 to 4 to incor-
porate the depth map. For the conditional diffusion model
Gc, the fist layer is enlarged to 10 channels to incorporate
additional conditions (4 channels for the noisy RGBD im-
age, 3 for the warped texture, 1 for the warped depth, 1 for
the texture mask, and 1 for the depth ). For super-resolution
model Gsr, the fist layer is enlarged to 8 channels to in-
clude the low-resolution image as condition. The parame-
ters added for injecting the conditions are initialized as zero
to remove the impact of conditions at the beginning of con-
ditional model fine-tuning.

All our models are trained with FP16 precision using 8
NVIDIA Tesla V100 GPU with 32GB memory FP16 train-
ing. We use the Adam [3] optimizer with a learning rate of
1e − 4 and β set to (0.9, 0.999) for all the datasets. The
batchsize is set to 64. Exponential Moving Average (EMA)
is enabled with smoothing rate of 0.9999 to boost the perfor-
mance. More information about the networks and training
process can be found in Table I.

B. More Implementation Details
B.1. Condition Aggregation Details

In Sec. 4.3 of the main paper, we introduced our aggre-
gated conditioning strategy and here we present more de-
tails regarding aggregation weight computation.

To sample from qi(Γ(x,πn)|Π(Γ(x,π0),πn), · · · ), our
condition aggregation collects information from previous
images by performing a weighted sum across all warped
versions of them:

Cn =

n−1∑
i=0

W(i,n)Π(Ii,πn)

/ n−1∑
i=0

W(i,n), (I)

where W(i,n) is the weight map. The weight is calculated
for each pixel (x, y). Let px,y and nx,y be the pixel’s spatial
position and normal in the world coordinate space and dx,y

be its distance to the nearest masked pixel on image plane,
we set

Wx,y
(i,n) = ϕ

( oi − px,y

∥oi − px,y∥
· nx,y

)
ψ(dx,y), (II)

where oi is the camera center of the i-th view. ϕ(·) and
ψ(·) are scalar functions for balancing the weights of the
two terms, which are empirically set as ϕ(a) = exp(−20 ∗
arccos(a)) and ψ(b) = b. The first term assign each pixel
the least distorted information [1] and the second term sup-
presses the contribution of pixels near occlusion boundaries.

C. More Experimental Results
C.1. More Visual Results

In Fig. I and Fig. II, we show more multiview results
of 1282 resolution for each of the four datasets we tested.
More uncurated results with camera pose randomly drawn
from Gaussian distribution (σ = 0.3 for yaw and 0.15 for
pitch) are presented in Fig. III and Fig. IV.

C.2. More 360◦ Results

In Fig. V, we show more cases where our method suc-
cessfully generates the results under a 360◦ camera trajec-
tory.



C.3. More 2562 Results

In Fig. VI, we show more 2562 multiview results gener-
ated with the diffusion-based image upsampler.

C.4. Shape Extraction

To extact the 3D shape of a generated instance, we em-
ploy tsdf-fusion [5] to fuse the generated multiview depth
maps into a voxel grid and obtain the surface mesh us-
ing marching cubes [4]. Some examples are visualized in
Fig. VII.

C.5. Failure Cases

In Fig. VIII, we demonstrate some typical failure cases
of our method. First, our unconditional generation model
Gu sometimes failed to model complex structures, which
can be attributed to both limited model capacity and limited
data for some object categories in ImageNet. Second, our
model may generate severely-mismatched color and depth
maps along occlusion boundaries which cannot be handled
our texture erosion strategy. Under such situations, the con-
ditional model will fail to generate proper contents under
novel views. For the 360◦ generation, the sequence may not
converge and the results can be completely out of domain.

D. Discussions
D.1. Discussion about concurrent work

3DGP [6] is a concurrent work to ours. Their code
and models are released after our submission (released on
May 6th). Here, we add the results comparison with their
method. Quantitatively speaking, our method achieves bet-
ter generation quality as their FID-10K on ImageNet-128
is 20.6 while ours is 9.45. Besides, our method does not
suffer their “background sticking and no 360◦ generation”,
“flat geometry”, and “GAN mode collapse” issues (see text
in their webpage).

D.2. More discussion of limitations

Our method suffers from degraded image quality for
large views, as mentioned in Sec. 5.3 of the main paper.
There are at least two causes for this issue: domain drift
and data bias. The errors on the generated depth will lead
to distortions in the warped novel views, which will be ac-
cumulated and amplified in the iterative view sampling pro-
cess and hence gradually drive the sample away from the
real image distribution. Poor results will be generated when
severe domain drift happens. Additionally, the object poses
in the training datasets are usually not distributed uniformly.
Side and rear views are often much less than frontal ones,
rendering side- and rear-view image generation difficult.

Also, the quality of the back-views when generating
under 360◦ is sometimes unsatisfactory (e.g., copy of the

frontal view). Methods trained on single images may have
the ambiguity for certain objects with symmetry. Adding
view conditioning may help alleviating this issue. Note that
in our case, lacking back-view training images is also an
important reason for the inferior back-views.
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Figure I: More 1282 multiview results on ImageNet.



Figure II: More 1282 multiview results for SDIP Dogs, SDIP Elephants, and LSUN Horses.



Figure III: More uncurated 1282 single-view results for ImageNet. Note that the views are randomly sampled.



Figure IV: More uncurated 1282 single-view results for SDIP Dogs, SDIP Elephants, and LSUN Horses. Note that the views
are randomly sampled.



Figure V: More 360◦ generation results on ImageNet.



Figure VI: More 2562 generation results.



Figure VII: Shapes extracted using tsdf fusion and marching cubes.
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Figure VIII: Failure cases. (a) Some structures that are not well modeled by the network; (b) Severe mismatch between the
generated color and depth map along occlusion boundary leads to poor novel view generation results. (c) Samples can be out
of domain for very large views.


