
A. Implementation details
Diffusion pre-training. We follow official implemen-

tations of DDPM, EDM and DiT for generative diffusion
pre-training. The networks used in DDPM and EDM are
UNets based on Wide ResNet with multiple convolutional
down-sampling and up-sampling stages. Single head self-
attention layers are used in the residual blocks at some res-
olutions. For CIFAR-10, we retrieve official checkpoints12

from their codebases. For Tiny-ImageNet, we use official
(or equivalent) implementations and similar configurations
to train unconditional diffusion models by ourselves. The
setting is in Table 5. Transformer-based DiT-XL/2 pre-
trained on 2562 ImageNet is retrieved from its official code-
base3, and we do not train a smaller version (e.g. DiT-B/2)
due to the high computational cost. The used off-the-shelf
VAE model for latent compression is retrieved from Stable
Diffusion4, which has a down-sample factor of 8.

Linear probing and fine-tuning. We use very simple
settings for linear probing and fine-tuning experiments (see
Table 6 and Table 7) and we intentionally do not tune the
hyper-parameters such as Adam β1/β2 or weight decays. In
contrast with common practices in representation learning,
we do not use additional normalization layers before linear
classifiers since we find it also works well.

To train latent-space DiTs for recognition efficiently, we
store the extracted latent codes through the VAE encoder
and train DiTs in an offline manner. We encode 10 versions
of the training set with data augmentations and randomly
sample one version per epoch at the training. This approach
may suffer from insufficient augmentation, and increasing
augmentation versions or training with online VAE encoder
may improve the recognition accuracy.

Supervised training from scratch. In Figure 4, we
present recognition accuracies of truncated UNet encoders
trained from scratch and compare them to supervised Wide
ResNets. The setting is in Table 8. We intentionally train
these supervised models for long duration (200 epochs) to
reach maximum performance for fair comparisons.

B. Layer-noise combinations in grid search
In Section 3.2 we have shown that the layer-noise com-

bination affects representation quality heavily. We perform
grid searching to find a good enough, if not the best, com-
bination for each model and dataset. For 18-step or 50-step
EDM models, we train linear classifiers for 10 epochs with
each layer and timestep. For 1000-step DDPM or DiT, we
increase the timestep by 5 or 10 to search more efficiently.
Table 9 shows the combinations adopted in Section 4.

1https://github.com/pesser/pytorch diffusion
2https://github.com/NVlabs/edm
3https://github.com/facebookresearch/DiT
4Hugging Face/Diffusers

dataset CIFAR-10 Tiny-ImageNet
model DDPM EDM DDPM EDM

architecture DDPM DDPM++ DDPM DDPM++
base channels 128 128 128 128

channel multipliers 1-2-2-2 2-2-2 1-2-2-2 1-2-2-2
attention resolutions {16} {16} {16} {16}
blocks per resolution 2 4 2 4
full DDAE params 35.7M 55.7M 35.7M 61.8M
pre-training epochs 2000 4000 2000 2000

Table 5. Network specifications for diffusion pre-training.

config value
optimizer Adam with default momentum & weight decay
base learning rate 1e-3
learning rate schedule cosine decay
batch size per GPU 128
GPUs 4
augmentations RandomHorizontalFlip() and

RandomCrop(32, 4) for CIFAR-10 or
RandomCrop(64, 4) for Tiny-ImageNet

training epochs CIFAR-10 Tiny-ImageNet
DDPM 10 20
EDM 15 30
DiT 30 30

Table 6. Linear probing setting.

config value
optimizer Adam with default momentum & weight decay
base learning rate 1e-3 (DDPM and EDM), 8e-5(DiT)
learning rate schedule cosine decay
batch size per GPU 128 (DDPM and EDM), 8 (DiT)
GPUs 4 (DDPM and EDM), 8 (DiT)
augmentations RandomHorizontalFlip() and

RandomCrop(32, 4) for CIFAR-10 or
RandomCrop(64, 4) for Tiny-ImageNet

training epochs CIFAR-10 Tiny-ImageNet
DDPM 30 80
EDM 50 100
DiT 50 50

Table 7. Fine-tuning setting.

config value
optimizer Adam (DDAE encoder), SGD (Wide ResNet)
base learning rate 5e-4 (DDAE encoder), 0.1 (Wide ResNet)
learning rate schedule cosine decay
batch size per GPU 128
GPUs 4
augmentations RandomHorizontalFlip() and

RandomCrop(32, 4) for CIFAR-10 or
RandomCrop(64, 4) for Tiny-ImageNet

training epochs 200
warmup epochs 5

Table 8. Setting for training supervised models from scratch.

model dataset@resolution layer timestep
DDPM CIFAR-10@32 7/12 (1st block@16) 11/1000
EDM CIFAR-10@32 6/15 (1st block@16) 4/18
DiT CIFAR-10@256 12/28 121/1000
DDPM Tiny-ImageNet@64 2/12 (2nd block@8) 45/1000
EDM Tiny-ImageNet@64 7/20 (2nd block@16) 14/50
DiT Tiny-ImageNet@256 13/28 91/1000

Table 9. Adopted layer-noise combinations. The numbers fol-
lowing “@” denote image or feature map resolutions.

https://github.com/pesser/pytorch_diffusion
https://github.com/NVlabs/edm
https://github.com/facebookresearch/DiT
https://huggingface.co/docs/diffusers

