A. Implementation details

Diffusion pre-training. We follow official implementations of DDPM, EDM and DiT for generative diffusion pre-training. The networks used in DDPM and EDM are UNets based on Wide ResNet with multiple convolutional down-sampling and up-sampling stages. Single head selfattention layers are used in the residual blocks at some resolutions. For CIFAR-10, we retrieve official checkpoints¹² from their codebases. For Tiny-ImageNet, we use official (or equivalent) implementations and similar configurations to train unconditional diffusion models by ourselves. The setting is in Table 5. Transformer-based DiT-XL/2 pretrained on 256² ImageNet is retrieved from its official codebase³, and we do not train a smaller version (e.g. DiT-B/2) due to the high computational cost. The used off-the-shelf VAE model for latent compression is retrieved from Stable Diffusion⁴, which has a down-sample factor of 8.

Linear probing and fine-tuning. We use very simple settings for linear probing and fine-tuning experiments (see Table 6 and Table 7) and we intentionally do not tune the hyper-parameters such as Adam β_1/β_2 or weight decays. In contrast with common practices in representation learning, we do not use additional normalization layers before linear classifiers since we find it also works well.

To train latent-space DiTs for recognition efficiently, we store the extracted latent codes through the VAE encoder and train DiTs in an offline manner. We encode 10 versions of the training set with data augmentations and randomly sample one version per epoch at the training. This approach may suffer from insufficient augmentation, and increasing augmentation versions or training with online VAE encoder may improve the recognition accuracy.

Supervised training from scratch. In Figure 4, we present recognition accuracies of truncated UNet encoders trained from scratch and compare them to supervised Wide ResNets. The setting is in Table 8. We intentionally train these supervised models for long duration (200 epochs) to reach maximum performance for fair comparisons.

B. Layer-noise combinations in grid search

In Section 3.2 we have shown that the layer-noise combination affects representation quality heavily. We perform grid searching to find a good enough, if not the best, combination for each model and dataset. For 18-step or 50-step EDM models, we train linear classifiers for 10 epochs with each layer and timestep. For 1000-step DDPM or DiT, we increase the timestep by 5 or 10 to search more efficiently. Table 9 shows the combinations adopted in Section 4.

dataset	CIFAR-10		Tiny-ImageNet	
model	DDPM	EDM	DDPM	EDM
architecture	DDPM	DDPM++	DDPM	DDPM++
base channels	128	128	128	128
channel multipliers	1-2-2-2	2-2-2	1-2-2-2	1-2-2-2
attention resolutions	{16}	{16}	{16}	{16}
blocks per resolution	2	4	2	4
full DDAE params	35.7M	55.7M	35.7M	61.8M
pre-training epochs	2000	4000	2000	2000

Table 5. Network specifications for diffusion pre-training.

config	value				
optimizer	Adam with default momentum & weight decay				
base learning rate	1e-3				
learning rate schedule	cosine decay				
batch size per GPU	128				
GPUs	4				
augmentations	RandomHorizontalFlip() and				
	RandomCrop(32, 4) for CIFAR-10	or			
	RandomCrop(64, 4) for Tiny-Image	eNet			
training epochs	CIFAR-10 Tiny-ImageNet				
	DDPM 10 20				
	EDM 15 30				
	DiT 30 30				
Table 6. Linear probing setting.					

config value Adam with default momentum & weight decay optimizer base learning rate 1e-3 (DDPM and EDM), 8e-5(DiT) learning rate schedule cosine decay 128 (DDPM and EDM), 8 (DiT) batch size per GPU **GPUs** 4 (DDPM and EDM), 8 (DiT) augmentations RandomHorizontalFlip() and RandomCrop(32, 4) for CIFAR-10 or RandomCrop(64, 4) for Tiny-ImageNet training epochs CIFAR-10 Tiny-ImageNet DDPM 30 80 EDM 50 100 DiT 50 50 Table 7. Fine-tuning setting.

config	value		
optimizer	Adam (DDAE encoder), SGD (Wide ResNet)		
base learning rate	5e-4 (DDAE encoder), 0.1 (Wide ResNet)		
learning rate schedule	cosine decay		
batch size per GPU	128		
GPUs	4		
augmentations	RandomHorizontalFlip() and		
	RandomCrop(32, 4) for CIFAR-10 or		
	RandomCrop(64, 4) for Tiny-ImageNet		
training epochs	200		
warmup epochs	5		

Table 8. Setting for training supervised models from scratch.

model	dataset@resolution	layer	timestep
DDPM	CIFAR-10@32	7/12 (1st block@16)	11/1000
EDM	CIFAR-10@32	6/15 (1st block@16)	4/18
DiT	CIFAR-10@256	12/28	121/1000
DDPM	Tiny-ImageNet@64	2/12 (2nd block@8)	45/1000
EDM	Tiny-ImageNet@64	7/20 (2nd block@16)	14/50
DiT	Tiny-ImageNet@256	13/28	91/1000
Table 0	Adopted laver-poise	combinations The n	umbers fol

Table 9. Adopted layer-noise combinations. The numbers following "@" denote image or feature map resolutions.

¹https://github.com/pesser/pytorch_diffusion

²https://github.com/NVlabs/edm

³https://github.com/facebookresearch/DiT

⁴Hugging Face/Diffusers