
GRAM-HD: 3D-Consistent Image Generation at High Resolution with
Generative Radiance Manifolds

(Supplementary Material)

A. Network architecture
Radiance manifold generator As shown in Figure 1
(left), the network architecture of our radiance manifold
generator is the same as GRAM [6], except that we addi-
tional apply several fully-connected layers with skip con-
nections to extract intermediate features. These layers
project the 256-dimension hidden features of the FiLM
SIREN MLP [3] into 32-dimension intermediate features
which are used as the input for the super-resolution module.

Super-resolution module Figure 1 (right) shows the de-
tailed structure of our super-resolution module. For LR fea-
ture processing, we apply 8 RRDB blocks, each having 64
channels. We then apply 4 sub-pixel convolution layers with
64, 64, 32, and 16 channels respectively for upsampling to
10242 resolution. Finally, a 16-channel convolution layer
and a 4-channel projection layer are applied to produce the
color and occupancy. Besides, a mapping MLP with three
256-dimension hidden layers maps the latent code to the
style code. Each conv layer after the RRDBs is modulated
by an affine-transformed style code.

B. More implementation details
B.1. Data preparation

We align the images in FFHQ [9] and AFHQv2-
CATS [4] using detected landmarks. Specifically, we first
detect landmarks of the images (5 landmarks for FFHQ and
9 for AFHQv2-CATS) using of-the-shelf landmark detec-
tors [1, 11]. We then resize and crop the images by solving
a least-square fitting problem between the detected land-
marks and a set of predefined 3D keypoints, following the
strategy of [7]. The 3D keypoints for human face are de-
rived from the mean face of a 3D parametric model [14],
while for cat they are some manually-selected vertices on a
cat head mesh downloaded from the Internet.

We extract camera poses for the images in the datasets,
which are used to estimate the prior camera pose distribu-
tions and serve as the pseudo labels for the pose loss term
following [6]. For FFHQ, the face reconstruction method

of [7] is employed for pose estimation. For AFHQv2-
CATS, the estimated angles are obtained via solving the
aforementioned least-square fitting. Then, we fit Gaussian
distributions on yaw and pitch angles as prior pose distribu-
tions. The standard deviations for yaw and pitch angles are
(0.3, 0.15) and (0.18, 0.15) for FFHQ and AFHQv2-CATS,
respectively.

B.2. More training details

During training, we randomly sample latent code z from
the normal distribution and camera pose θ from the esti-
mated prior distributions of the datasets. A two-stage train-
ing strategy is applied as mentioned in the main paper.

At the first training stage, we initialize the radiance man-
ifold generator following [6]: 23 evenly distributed sphere
manifolds centered at (0, 0,−1.5) covering 3D objects in-
side of the [−1, 1]3 cube and an additional background
plane at z = −1 are initialized. The learning rates are set to
2e − 5 for the radiance manifold generator and 2e − 4 for
the LR discriminator.

At the second stage, we freeze the radiance manifold
generator and only optimize the super-resolution module
(and the newly-added transformation layers for intermedi-
ate features). The HR discriminator is trained from scratch
without progressive growing. The learning rates are set to
2e−4 for both the super-resolution module and the HR dis-
criminator.

For all the training processes, we use the Adam [10] op-
timizer with β1 = 0 and β2 = 0.9. Batch size is set to
32 in the first training stage and 32, 16, 16 in second stage
for 2562, 5122, 10242, respectively. We train our model for
100K iterations on FFHQ and 40K iterations on AFHQv2-
CATS since it is a relatively small dataset. Training took 3
to 7 days depending on the dataset and resolution.

Background super-resolution details For the last sur-
face manifold, i.e., the background plane, we use a larger
projection view during manifold gridding, as it spans a
much wider region for covering the background under ex-
treme views. A nonlinear mapping is applied to do the sam-
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Figure 1: Network architecture. The components in gray color are from GRAM [6] and others are newly introduced in our
GRAM-HD. Left: The architecture of the radiance manifold generator. The intermediate features are transformed by simply
fully connected layers and accumulated to be the input for the super-resolution CNN. The RGBα prediction branches and the
manifold predictor network are the identical to GRAM and omitted here for brevity. Right: The architecture of the super-
resolution module with several Residual-in-Residual Dense Blocks (RRDBs) [18] and sub-pixel convolutional layers [15] as
backbone.

pling. Specifically, we first uniformly sample xy coordi-
nates within [−1, 1]2 and then apply the following nonlinear
mapping function:

BGTrans(x) =


2 tan(x+ 0.5)− 1 x < −0.5

2x −0.5 ≤ x ≤ 0.5

2 tan(x− 0.5) + 1 x > 0.5

.

(1)
The purpose of this transformation is to enlarge the sam-
pling region and sample denser points around center. Ra-
diance are calculated at these sampled and transformed co-
ordinates and form the radiance map for super-resolution.
A small independent super-resolution CNN is applied since
the radiance distribution on the background significantly
differs from the foreground.

B.3. 3D-consistency metric details

To quantitatively evaluate 3D consistency, we use the
reconstruction quality of a recent surface-based multiview
reconstruction method - NeuS [17]. Specifically, for each
method, we first randomly generate 50 instances. For each

instance, we render 30 images with yaw angle evenly sam-
pled from −0.4 radian to 0.4 radian, and train a NeuS model
with these images as input. The mean PSNR and SSIM
scores of the reconstructed images by NeuS are used as the
quantitative metrics. In theory, the more consistent the input
mutlview images are, the higher the reconstruction quality
will be. For NeuS training, we use the official implementa-
tion with default settings.

B.4. Shape extraction details

We employ a multiview depth fusion method to extract
shapes at high resolution. For a given view, the depth map
can be calculated by:

d(r) =

N∑
i=1

T (xi)α(xi)z(xi)

=

N∑
i=1

∏
j<i

(1− α(xj))α(xi)z(xi),

(2)



where r is a viewing ray, xi are the point samples, i.e.,
ray-manifold intersections, and z(·) denotes the projected
depth. We then calculate a discrete occupancy field on a 3D
sampling grid. Specifically, for each point xs on the sam-
pling grid, we project it to the depth map and calculate its
occupancy as α = Sigmoid

(
k
(
z(xs) − d

))
where k is a

scaling factor we set to 10. We average the occupancy from
15 different views, and run MarchingCube [12] to extract
the shape.

B.5. Image embedding details

Given a target image It, we freeze the weights of the
generator and optimize the style code wi for each modulated
layer to generate an image Ig that best matches the target
image. The following objective function is used:

Lemb = ∥Ig − It∥2 + LPIPS(Ig, It)

+ (1− ⟨fid(Ig), fid(It)⟩)

+
∑
i

∥wi − w̄∥2 +
∑
j

∥σd
j ∥2,

(3)

where fid is an identity feature extractor [5], LPIPS is a
perceptual loss from [19], w̄ is the precomputed mean style
code, and σd

j = sqrt
(∑N

i=1 T (xi)α(xi)z
2(xi) − d2(rj)

)
is the standard deviation of depth along each viewing ray
rj . The style and depth regularizations are added to avoid
overfitting. With the Adam [10] optimizer, we first run the
optimization on low resolution for 200 steps and then switch
to the high resolution for another 5000 steps.

C. More experimental results
C.1. More Qualitative results

Figure 2 and 3 present the uncurated generation results
of GRAM-HD. Figure 4 and 5 further show the multiview
images of some generated instances. Our method can gen-
erate realistic images at high resolution with strong 3D con-
sistency.

C.2. More Comparisons

In this section, we provide more comparisons of geom-
etry details and 3D consistency between our method and
StyleNeRF [8], StyleSDF [13], EG3D [2], EpiGRAF [16]
and GMPI [20].

Visual comparison of geometry details In Figure 6, we
show more samples from different methods with some thin
geometry structure highlighted. As we can see from the
figures, almost all other methods generate some artifacts
around eyeglass for human face and whiskers for cats. In
particular, all these method failed to generate reasonable
whiskers of cats: the generated cat whiskers are stuck onto
the cat faces instead of floating naturally in the front. In

contrast, our method can generate highly-realistic results for
such thin structures.

EPI comparison In Figure 7, we show more EPI-like
texture images to demonstrate GRAM-HD’s superiority on
3D consistency. The textures of StyleNeRF, StyleSDF and
EG3D are either distorted or stuck to image coordinates,
indicating different types of inconsistency. Although Epi-
GRAF uses a pure 3D representation without image-space
upsampler, there are still some noise on its generated tex-
tures as the Monte-Carlo volume rendering is not noise-free.
The textures from our method and GMPI are smooth and
natural, demonstrating their superior 3D consistency.

C.3. Latent space interpolation

Figure 8 shows the results of latent space interpolation
with GRAM-HD. We select generated instances of differ-
ent gender, skin color, age, etc., and then show the results
by linearly interpolating their latent codes. The meaningful
intermediate results and smooth changes demonstrate the
reasonable latent space learned by GRAM-HD.

C.4. Style mixing

We further tested style mixing [9] with GRAM-HD, and
the results are shown in Figure 10. By combining styles
from the source and target instances in different layers, it is
found that styles in shallower layers (layer 1 to 5 in radiance
manifold generator) mainly control geometry, while those
in deeper layers mainly control appearance. Note that our
method is not trained with the style mixing strategy.

C.5. Image embedding and editing

Figure 9 shows more synthesized novel-view images ob-
tained by embedding the given single images. We achieve
high-resolution image embedding and pose manipulation
with well-maintained 3D consistency even for fine details.

C.6. Failure cases of generated results

Floaters On some randomly generated results, there
could be unwanted floaters in the front, as shown in Fig-
ure 11 (left). These floaters are not produced by super-
resolution module, but already exist on the LR radiance
manifolds. The reason may be that the supervision in LR
image-space cannot eliminate such floaters for they look
fine at low resolution. Jointly training the whole model in
one stage may solve the problem, which we leave as our
future work.

Exaggerated parallax artifacts When rotating the cam-
era, some contents (e.g. hair fringes) on certain gener-
ated instances could be floating at unexpected positions, as
shown in Figure 11 (right). We reckon that this is due to the
shared surface manifolds across the whole category cannot



provide accurate position for all structures of all instances.
It could be alleviated by using more shared surface mani-
folds or learning instance-specific manifolds, which we will
also explore in future.
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Figure 2: Uncurated 10242 results of GRAM-HD on FFHQ.



Figure 3: Uncurated 5122 results of GRAM-HD on AFHQv2-CATS.



Figure 4: Multiview generation results of GRAM-HD on FFHQ.



Figure 5: Multiview generation results of GRAM-HD on AFHQv2-CATS.
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Figure 6: More comparison of geometry details. Our method can generate thin geometry structures such as glasses and
whiskers while other methods either suffer some distortion (marked with box) or are not 3D-consistent. (Best viewed with
zoom-in; see also the accompanying video for better visualization.)
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Figure 7: More comparison of 3D consistency using spatiotemporal texture image.



Figure 8: Latent space interpolation results.
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Figure 9: More high-resolution image embedding and editing results.
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Figure 10: Style mixing between different generated subjects.

Figure 11: Failure cases. Left: Unwanted floaters on the generation results caused by LR generation (not the super-resolution
module). Right: Exaggerated parallax on some generated instances.


