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1. Model details
In this section, we detail the model configurations. The
model specifications are depicted in Fig. S1.
BEVFormer: We adopt a variant of BEVFormer with no
temporal information for our camera stem. As we need to
extract features for multiple agents at once, using a large
network can easily consume all the computation resources
for our experimented RTX3090 GPUs. Thus, instead of
using ResNet101-DCN [3, 2], we leverage ResNet50 as
our backbone. Since the OPV2V [10] dataset is smaller
than nuScenes [1] dataset and the used image resolution is
512× 512 compared with 900× 1600 in the original paper,
we find that this smaller backbone exhibits faster conver-
gence behavior in our configurations. To further save the
computation, we also set the grid size to be 128× 128.
PointPillar: In our experiment, the voxel resolution is
0.4, 0.4, 4 meters for x, y, and z directions, and the final gen-
erated feature map has the dimension of 128× 128× 256.
Compression and decompression: We adopt a 1× 1 con-
volution followed by a batch normalization layer and ReLU
to compress the features along the channel dimension. Sim-
ilarly, for the decompression, we leverage convolutions to
decompress the features to the original size.
HM-ViT: The received features are first concatenated to
form a stacked tensor F of shape N × 128 × 256. Then,
we conduct two iterations of graph feature updates. In each
iteration, we spatially warp the features and then pass them
to the H3GAT-L block and H3GAT-G block. The window
sizes for both blocks are 8 and the number of heads is also
8. After the iterative feature fusion learning, we pass the
features to the HM-MLP to further refine the features.
Hetero-modal head: The final fused ego vehicle’s feature
is fed into the hetero-modal decoder and then passed to the
classification and regression head.
Hetero-modal MLP: The hetero-modal MLP sequentially
feeds features into the linear layer, GELU activation
function [4], dropout layer, linear layer, and dropout layer.
Different sets of parameters are used as per each agent’s
modality.

Hetero-modal LN: We adopt classical layer normalization
to calculate the statistics for the input data while the learn-

able affine parameters are learned separately for features of
camera agents and LiDAR agents.

2. Design choice of communication
Previous LiDAR-based cooperative perception commu-

nication choices [6, 7, 9, 10, 5] can be broadly classified into
two categories: 1) ego-centric approach [6, 5, 7] where the
LiDAR point clouds of neighboring AVs are first projected
to the ego vehicle’s coordinate frame and then features are
extracted based on the projected point clouds, and 2) agent-
centric approach [9, 10] where each agent extracts features
based on its own sensing observation in its own coordinate
system and then broadcasts the features to all the neighbor-
ing agents. The ego-centric approach can preserve more
feature points as the points are projected to the ego frame
and all the relevant points within the evaluation range are
kept but this approach requires more computation and the
computation scales linearly as the number of ego agents in-
creases. Moreover, projecting RGB images from the other
agents directly to the ego frame is hardly feasible and is
ill-posed due to the occlusion and noisy 3D-2D correspon-
dence. To this end, we adopt the agent-centric approach
for broadcasting features for its computation efficiency and
hospitality for camera feature extraction.

3. Experiment
3.1. Comparison with other dataset

V2V4Real [8] only released the LiDAR data, and the
camera data has not yet been released. This makes it un-
suitable for conducting hetero-modal experiments, which
require data from multiple sensor modalities. DAIR-
V2X [11] is an open dataset for Vehicle-to-Infrastructure
(V2I) cooperation. The infrastructure-side camera and
vehicle-side camera are mounted at different heights with
distinct pitch angles, leading to divergent data distribu-
tion. Thus hetero-modal V2I cooperation involves another
agent type heterogeneity, and it is beyond the scope of this
work where we focus on hetero-modal V2V cooperation.
OPV2V [10] is a large-scale simulation dataset for V2V co-
operative perception. It provides multi-view images and Li-
DAR data for each agent, which is suitable for investigating



Output size HM-ViT framework

PointPillar Encoder N1 × 128× 128× 256
BevFormer Encoder N2 × 128× 128× 256

Compression
Decompression

128× 128× 256/k Hetero-modal compressor:
[

Conv1x1, BN, ReLU
]

128× 128× 256 Hetero-modal decompressor:
[

Conv1x1, BN, ReLU
Conv1x1, BN, ReLU

]

HM-ViT Backbone N × 128× 128× 256

[
ConCat0, 256

]

H3GAT-L, dim 256, head 8
window size, {8, 8}
HM-MLP, dim 256
HM-LN, dim 256

H3GAT-G, dim 256, head 8
window size, {8, 8}
HM-MLP, dim 256
HM-LN, dim 256


× 2

[
HM-MLP, dim 256

]

Hetero-modal Head
128× 128× 16

Hetero-modal decoder:
[

Conv3x3, BN, ReLU
Conv3x3, BN, ReLU

]
× 2

Hetero-modal class. head:
[

Conv1x1, 2, stride 1
]

Hetero-modal reg. head:
[

Conv1x1, 14, stride 1
]

Table S1: Architecture details of HM-ViT. N1 represents the number of camera agents, N2 represents the number of LiDAR
agents and N = N1 +N2 represents the total number of agents. k is the compression rate.

hetero-modal V2V cooperative perception. In the future,
we plan to further investigate hetero-modal V2X coopera-
tive perception in real-world collected dataset.

3.2. Sensor configuration

Each vehicle is equipped with 1 LiDAR and 4 cameras
and the cameras are installed on four sides of the vehicles
(left/right/front/rear, covering 360 horizontal field-of-the-
view as Fig. 1 shows.

3.3. Additional qualitative results

In Fig. 2 (camera ego vehicle) and Fig. 3 (LiDAR ego
vehicle), we provide more qualitative comparisons between
HM-ViT and other intermediate fusion methods including
V2VNet [6], Disconet [5], AttFuse [10], CoBEVT [7], and
V2X-ViT [9]. In all the figures, we only plot the LiDAR
point clouds of the agent if agent’s LiDAR is involved in
the collaboration. Our method produces more robust pre-
dictions compared with other methods. In particular, as
shown in Fig. 2, after collaborating with the LiDAR agents,
our HM-ViT can accurately predict all the vehicles, which
again demonstrates the superiority of our method and the
great potential of multi-agent hetero-modal cooperation.
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Figure 1: Visualization of OPV2V camera data where each row is 4 camera data of one vehicle.
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(a) Pure camera fusion (b) Camera ego with LiDAR collaborators

Figure 2: Additional qualitative results for (a) pure camera-based V2V perception and (b) hetero-modal V2V perception with
camera ego vehicle and LiDAR collaborators.



(a) Pure LiDAR fusion (b) LiDAR ego with camera collaborators
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Figure 3: Additional qualitative results for (a) pure LiDAR-based V2V perception and (b) hetero-modal V2V perception with
LiDAR ego vehicle and camera collaborators.


