
Token-Label Alignment for Vision Transformers
Supplementary Material

Han Xiao1,2,* Wenzhao Zheng1,2,* Zheng Zhu3 Jie Zhou1,2 Jiwen Lu1,2,†

1Beijing National Research Center for Information Science and Technology, China
2Department of Automation, Tsinghua University, China 3PhiGent Robotics

{h-xiao20,zhengwz18}@mails.tsinghua.edu.cn; zhengzhu@ieee.org;
{jzhou,lujiwen}@tsinghua.edu.cn

A. Comparisons of Different Training Recipes

We compare different training recipes for the DeiT-S
model in Table 1. The results of TransMix [2] reported in
the original paper adopts an advanced training recipe with
a model exponential moving average, resulting in slower
training speed. Differently, we basically follow the conven-
tional DeiT-S [17] training recipe and improve its perfor-
mance by 0.8%. We report the result of TransMix with the
same training recipe (80.1%) in Table 2 of the main text.

B. Details of Experimental Analysis

Details about Datasets We evaluate our method on Im-
ageNet [13] for image classification, ADE20K [19] for se-
mantic segmentation, and COCO 2017 [10] for object de-
tection and instance segmentation. ImageNet [13] contains
about 1.2 million training and 50K validation images from
1K categories. ADE20K [19] contains 20K training im-
ages and 2K validation images from 150 semantic cate-
gories. COCO 2017 [10] dataset consists of 118K train-
ing images and 5K validation images from 80 different cat-
egories. We further conduct experiments to evaluate the
robustness and the generalization ability of the TL- Align
pretrained models. For robustness, we consider ImageNet-
A [9], ImageNet-C [8], ImageNet-R [7], and under Au-
toAttack [3]. ImageNet-A [9] consists of naturally ad-
versarial examples from real-world challenging scenarios.
ImageNet-C [8] is used to evaluate the model robustness to
diverse image corruptions. ImageNet-R [7] contains various
artistic renditions of 200 ImageNet classes. which contains
new test sets of ImageNet following the same labeling pro-
tocol. AutoAttack [3] is a novel adversarial attacks bench-
mark to test the adversarial robustness on ImageNet valida-
tion set. To evaluate the generalization ability, we adopt the
ImageNet-V2 dataset [12] which contains new test sets of
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ImageNet following the same labeling protocol.

Obtaining the “Ground-truth” Mixing Ratio. To bet-
ter illustrate the token fluctuation phenomenon, we compute
a “ground-truth” mixing ratio based on token similarity as
shown in Figure 1. Formally, given two input images X1,
X2 and their mixed sample X̃ generated by CutMix, we
feed all of them into the vision transformer to obtain the
corresponding tokens Zl

1, Zl
2 and Z̃l after the transformer

block l. For each mixed token z̃li in Z̃l, we compute its
maximum cosine similarity with all tokens in Zl

1 and Zl
2 ,

respectively, as:
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The contribution of input X1 to the token z̃li is then obtained
using the softmax function: λ = softmax(sl1(z̃

l
i), s
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We visualize this similarity-based mixing ratio of the class
token in DeiT-S in Figure 4 of the main text. As shown,
the token mixing ratio changes after processing by each
transformer block, which demonstrates the token fluctua-
tion problem. Moreover, TL-Align assigns a dynamic mix-
ing ratio to tokens at different layers, which is more consis-
tent with the “ground truth” compared with other methods.
This provides an empirical analysis to explain the improve-
ment achieved by our TL-Align.

Implementation of Different Data Mixing Strategies.
We provide implementation details of different data mixing
strategies that we adopt to evaluate the effectiveness of TL-
Align. Inspired by MAE [6] and BEiT [1], we implement
a random mixing strategy and block-wise mixing strategy.
The visualization of the mixed images produced by CutMix,
random mixing, and block-wise mixing strategies is shown
in Figure 2. Specifically, employing the block-wise strat-
egy leads to a top-1 accuracy of 80.0%, which is the high-



Table 1. Comparisons of different training recipes for the DeiT-S model on ImageNet-1K.

Method
Training Warmup

LR
Weight Model EMA

MixUp CutMix
MixUp Random Top-1

Epochs Epochs Decay EMA Decay Switch Prob Erasing Acc. (%)

DeiT-S1 [17] 300 5 0.0005 0.05 × - 0.0 0.0 - ✓ 76.4
DeiT-S2 [17] 300 5 0.0005 0.05 × - 0.8 1.0 0.5 ✓ 79.8

DeiT-S3 [17] 310 20 0.001 0.03 ✓ 0.99996 0.8 1.0 0.8 × 80.3
+TransMix [2] 310 20 0.001 0.03 ✓ 0.99996 0.8 1.0 0.8 × 80.7 (+0.4)

DeiT-S4 [17] 300 5 0.0005 0.05 × - 0.0 1.0 - ✓ 79.8
+TransMix [2] 300 5 0.0005 0.05 × - 0.0 1.0 - ✓ 80.1 (+0.3)
+TL-Align 300 5 0.0005 0.05 × - 0.0 1.0 - ✓ 80.6 (+0.8)
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Figure 1. Illustration of how we get a “ground-truth” mixing ratio based on token similarity.

est among the data mixing strategies. Our TL-Align further
boosts the accuracy by +0.3%, verifying its generalizability
on various data mixing strategies.

C. More Visualization Results

We provide more visualization results of the obtained la-
bels by the proposed TL-Align in Figure 3. We visualize the
input images, the mixed image, the original label embed-
ding, and the label embedding after our TL-Align. Specifi-
cally, we visualize the aligned label embedding after the fi-
nal transformer block for both DeiT-S and Swin-S. The size
of the original label embedding is equivalent to the number
of input tokens, i.e., 14 × 14 for DeiT-S and 56 × 56 for
Swin-Transformer since they employ different patch sizes
for patch embedding. The value of the label embedding
represents the probability of which class the corresponding
token belongs to, which is shown by color. Red stands for
the class of the first input image while blue stands for the
class of the second input image. We observe that the aligned
labels can deviate from the original labels, resulting in dif-
ferent mixing ratios during training. Therefore, using the
original mixing ratio as the training target produces false
training signals and might lead to inferior performance.

D. Generalizing TL-Align Beyond ViTs

ViTs can achieve better accuracy/computation trade-off
than conventional CNNs, where one of the working mech-
anisms is the alternation between spatial mixing (e.g., SA)
and channel mixing (e.g., MLP) [15]. Based on this, some
works have explored different spatial mixing strategies in
addition to self-attention, including spatial MLP [15, 16,
14, 18] and depth-wise convolution [4, 11, 5]. For an im-
age X ∈ RH×W×C , they first perform patch-wise im-
age tokenization to obtain a tokenized image representation
Z ∈ RN×d, where N is the number of tokens and d is the
number of channels. To generalize TL-Align to other archi-
tectures beyond ViTs, we first formulate modern deep vi-
sion networks into various compositions of five operations:

• Spatial mixing: Z ← Ws(Z) · Z, where Ws(Z) ∈
RN×N .

• Channel mixing: Z ← Z ·Wc(Z), where Wc(Z) ∈
Rd×d.

• Point-wise transformation: Z ← f(Z), where f is a
point-wise operation such as bias adding and normal-
ization.
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Figure 2. Visualization of mixed images produced by different data mixing strategies.

Table 2. Updating of the label embeddings for different operations on the tokens.
Operation Token Processing Label Alignment Example

Spatial mixing Z←Ws(Z) · Z Y ← Norm(Ws(Z)) ·Y Spatial attention
Channel mixing Z← Z ·Wc(Z) Y ← Y Channel MLP
Point-wise transformation Z← f(Z) Y ← Y Layer normalization
Residual connection Z← Z+ g(Z) Y ← Norm(Y + g(Y)) Residual connection
Spatial aggregation Z← Aggre({Zi}) Y ← Norm(

∑
i Yi) Patch merging

• Residual connection: Z ← Z + g(Z), where g can
be one or a composition of the aforementioned opera-
tions.

• Spatial aggregation: Z ← Aggre({Zi}), where Aggre
typically concatenates multiple tokens across the fea-
ture dimension.

For example, MLP-Mixer [15] adopts Ws(Z) = W s,
where W s ∈ RN×N is a learnable parameter matrix. Con-
vNeXt [11] adopts Ws(Z) = T (K), where K ∈ R7×7 is
a convolutional kernel and T transforms the kernel into an
equivalent matrix for direct multiplication.

The proposed TL-Align can be generalized to different
architectures by applying the corresponding operations on
the label embeddings. We initialize the label embedding
following Eq. 5 in the main text. We detail the label em-
bedding updating for different operations in Table 2. The
Norm(·) operation denotes that we normalize each row vec-
tor so that the sum of all elements equals to 1.

For spatial mixing, we accordingly mix the token embed-
dings using the same weights as the token processing. For
example, for a processed token ẑ = 0.5 · z1 + 0.5 · z2, we
similarly compute the aligned label as ŷ = 0.5·y1+0.5·y2,
assuming the label information is linearly addable. As chan-
nel mixing and point-wise transformation only reorganize
information within each token, they do not alter the label
embedding. For residual connection, we similarly add a
residual connection to the label embedding before normal-
ization. Spatial aggregation is similar to spatial mixing and
also aggregates information among multiple tokens. There-
fore, we also need to align the labels by adding their la-
bel embeddings before normalization. We leave the experi-
ments for generalized TL-Align for future works.
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Figure 3. More visualization results on DeiT-S and Swin-S. We visualize the input images, the mixed image, the original label embedding,
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