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A. Spatial-Temporal Propagation
A.1. Paradigm Comparison

Recent box-based tracking methods [2, 17] with leading
performance use the one-stage paradigm with large-scale
transformers [ 12, 4] pre-trained on ImageNet [3]. As a uni-
fied framework, we use the two-stage paradigm, but we fur-
ther perform spatial-temporal propagation across multiple
memory frames, which has been proven to be effective in
video object segmentation [8, 1, 15]. Compared with com-
mon tracking methods (Figure 1), the memory propagation
on whole frames has larger coverage on both temporal and
spatial dimensions.
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Figure 1. Comparison between two-stage (up left), one-stage (up
right) tracking paradigms [13, 17] and memory based propagation
paradigm [8, 15] (down middle) in our framework.

A.2. Memory Strategy

We use previous frames together with their predicted
masks to update the memory storage by extending the stored
keys and values for attention operations in the propagation
module. For VOT task, we still predict masks for each
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Figure 2. Qualitative results of MITS on VOT, compared with
SOTA SOT methods MixFormer [2] and OSTrack [17].
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Figure 3. Qualitative results of MITS on VOS, compared with
SOTA VOS method DeAOT [16]. For MITS, predictions from
box predictor and mask decoder are both visualized.

frame for memory updating, as for VOS task. The mem-
ory storage is used in two types of attention in the propa-
gation module, the long-term attention and the short-term
attention [15, 16]. The long-term attention is between the
current frame and all memory frames and is performed in
a global manner. The short-term attention is performed be-
tween the current frame and a previous frame in a local win-
dow. In practice, we update the long-term memory every
T; frame, and set a max memory capacity of T},,, = 10
frames to avoid memory explosion, which is very necessary
in long-term tracking. For short-term memory, we always
select the T,-th frame before the current frame. Results of
different long and short memory gaps are shown in Table
1. We find optimal memory gaps are relatively stable across
similar benchmarks like LaSOT [5] and TrackingNet [7],
as T; = 30,Ts = 10. GOT-10k [6] is special because the



LaSOT [5] TrackingNet [7]
T, Ts | AUC Py P AUC Py
40 13 | 71.8 79.7 77.8 | 832 88.6 84.1
30 10| 72.0 80.1 785 | 834 889 84.6
20 6 705 779 765 | 832 88.8 843

Table 1. Results of different long 7; and short 7's memory gaps on
SOT benchmarks.

videos in it are at 10 FPS, and we set T; = 10,7 = 2. For
VOS benchmarks YouTube-VOS [14] and DAVIS [10], we
set T; = 10,7, = 3.

B. Loss and Optimization

The loss functions we use for mask branch are Cross En-
tropy loss and Jaccard loss, and for box branch we use L1
loss and Generailized IoU loss [1 1]. For the ID decoder, we
only use Cross Entropy loss to supervise the reconstruction
of masks. Finally, we get the total loss:
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where ]3, P and B are predictions from mask decoder, ID
decoder and box predictor for N objects respectively, and
Y and B are the ground truth one-hot masks and boxes for
N objects. The losses are averaged among all objects. We
set A, =1, =0.5,0=0.5,=0.2,y=1.

C. More Visualization Results

More visualization results are in Figure 2 and 3. In Fig-
ure 2, we select challenging scenes with multiple similar
objects from LaSOT test set [5]. Advanced SOT methods
like OSTrack [17] and MixFormer [2] fail to track the tar-
get object under the complex interaction among multiple
similar objects with occlusion. Compared with them, MITS
with unified multi-object identification has learned how to
deal with multiple similar objects during training, so it is
able to identify and track the target robustly from similar
objects. In Figure 3, we compare MITS with SOTA VOS
method DeAOT [16] in a challenging scene with multiple
moving objects in DAVIS [9, 10]. More visualized video
clips are available in the supplementary video.
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