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1. Model Implementation Details

We utilized Blender to place 84 bones on the face, as de-
picted in Fig. 1. The bone arrangement was derived from
the distribution of the human skeletons and musculature to
better represent the facial details of human faces. The ori-
entations of all the bones are aligned parallel to the z-axis,
except the root bone. The list of bone indices and names
can be found in Tab. 1
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Figure 1. Illustration of the initial binding of ASM. The index
numbers of bones on the left half of the face are displayed, while
the index numbers of the right counterparts are omitted.

2. Dynamic Bone Binding

In the section of the main text on Dynamic Bone Bind-
ing, we discussed the process of updating the entire bone
binding by modifying the UV coordinates of the bones. In
the following section, we will provide additional elabora-
tion on this topic.

*Corresponding author.

Indices Parents Names Indices Parents Names

0 - root 42 head apple center.L
1 root head 43 head eyebrow center
2 head nose 44 head chin
3 nose nose bridge 45 head chin side.L
4 nose nose tip 46 head jaw.L
5 nose nose mid 47 head jaw corner.L
6 nose nose wing.L 48 head temple.L
7 nose nose wing.R 49 head ear.R
8 nose nose bottom.L 50 head eye.R
9 nose nose bottom.R 51 eye.R eye inner upper.R

10 nose nose hole.L 52 eye.R eye outer upper.R
11 nose nose hole.R 53 eye.R eye outer corner.R
12 nose nose bridge upper 54 eye.R eye inner lower.R
13 head mouth 55 eye.R eye outer lower.R
14 mouth lip corner.L 56 eye.R eye inner corner.R
15 mouth lip upper side.L 57 eye.R eye hole.R
16 mouth lip upper mid 58 eye.R eyelid outer.R
17 mouth lip lower mid 59 eye.R eyelid middle.R
18 mouth lip lower side.L 60 eye.R eyelid inner.R
19 mouth lip corner.L 61 head eyebrow.R
20 mouth lip upper side.R 62 eyebrow.R eyebrow inner.R
21 mouth lip lower side.R 63 eyebrow.R eyebrow outer.R
22 head ear.L 64 eyebrow.R eyebrow mid.R
23 head eye.L 65 head apple outer.R
24 eye.L eye inner upper.L 66 head apple lower.R
25 eye.L eye outer upper.L 67 head apple inner.R
26 eye.L eye outer corner.L 68 head apple center.R
27 eye.L eye inner lower.L 69 head chin side.R
28 eye.L eye outer lower.L 70 head jaw.R
29 eye.L eye inner corner.L 71 head jaw corner.R
30 eye.L eye hole.L 72 head temple.R
31 eye.L eyelid outer.L 73 head cheek.L
32 eye.L eyelid middle.L 74 head cheek.R
33 eye.L eyelid inner.L 75 head chin low
34 head eyebrow.L 76 head chin side low.L
35 eyebrow.L eyebrow inner.L 77 head chin side low.R
36 eyebrow.L eyebrow outer.L 78 head eyebrow center up
37 eyebrow.L eyebrow mid.L 79 head forehead.L
38 head forehead 80 head forehead.R
39 head apple outer.L 81 root neck front
40 head apple lower.L 82 root neck side.L
41 head apple inner.L 83 root neck side.R

Table 1. Skeleton structure of ASM.

Barycentric Interpolation. We check whether the UV co-
ordinate of bone j, denoted as ζ, falls within triangle fABC



on UV space using the following formula:

t1 =
−→
ζA×

−→
ζB

t2 =
−→
ζB ×

−→
ζC

t3 =
−→
ζC ×

−→
ζA

(1)

where × represents the cross-product operation. Point ζ lies
inside the triangle fABC when t1, t2, and t3 have the same
sign (t1 > 0, t2 > 0, t3 > 0 or t1 < 0, t2 < 0, t3 < 0).
We calculate the barycentric weights α, β, and γ of point ζ
within fABC with:

α, β, γ = Barycentric(ζ, A,B,C) (2)

where

α =
−(xζ − xB)(yC − yB) + (yζ − yB)(xC − xB)

−(xA − xB)(yC − yB) + (yA − yB)(xC − xB)

β =
−(xζ − xC)(yA − yC) + (yζ − yC)(xA − xC)

−(xB − xC)(yA − yC) + (yB − yC)(xA − xC)

γ = 1− α− β

(3)

After obtaining the values of α, β, and γ, we use them to
interpolate the coordinates of ψ in the world space. This
is done based on the 3D coordinates of the three vertices,
vA, vB , and vC . To recalculate ψj for bone j, we use the
following formula:

ψj = F ′(ζj) = αvA + βvB + γvC − vt +ψ
0
j (4)

where ζj represents the UV coordinates, vt represents the
vertex closest to ψ0

j , and ψ0
j represents the initial position

of bone j.

Binding Updated. We provide a brief overview of the Lin-
ear Blend Skinning (LBS) method:

v′ =

J∑
j=1

wjTjv (5)

The deformation is achieved through the use of wj and Tj ,
as demonstrated by Eq. 5. We expand Tj according to the
following formula:

Tj = Ml2w
j Mw2l

j

= Ml2w
j B−1

j

= Ml2w
p Mtrs(τj)B

−1
j

=

P∏
p=1

Mtrs(τp)M
trs(τj)B

−1
j

(6)

where Bj represents the bind-pose of bone j, and Mtrs(·)
will be described in detail below. P denotes the parent chain

for bone j. For example, the parent chain for nose tip rep-
resents (nose tip - nose - head - root). Eq. 6 shows that Tj

has two parts: the bind-pose matrix for bone j that converts
vertex v from the world space to the local space and the re-
sult of multiplying the transformation matrix of bone j with
the local-to-world matrix of its parent bone, which converts
v from the local space to the world space. When updating
the 3D world position of bone j, it is necessary to update Bj

and recalculate Mtrs using the updated relative position be-
tween bones. The first step is to update the bind-pose matrix
of each bone.

We keep rotation and scaling constant as in the initial
binding, and only the translation component of the bind-
pose matrix needs to be updated:

Bj = B(ψj) =

[
R0

jS
0
j ψj

0 1

]
(7)

where R0
j and S0

j represent the rotation and scaling matrices
identical to those present in the initial bind-pose matrix. ψj

is the updated 3D world space position obtained from Eq. 4.
Assuming that bones undergo just translation without rota-
tion greatly simplifies the dynamic bone binding calculation
stage.

We simply recalculate the new bind-pose matrix from
the updated world coordinates of each bone. In the follow-
ing, we will introduce how to calculate the transformation
matrix by taking into account the updated relative positions
between bones.

We define τ =
[
rT , tT , sT

]T ∈ R9 as the pose param-
eters in the local space of bone j, we decompose Mtrs(τj)
with:

Mtrs(τj) = Ml2p
j M(τj) (8)

where M(τj) ∈ R4×4 is the standard transformation ma-
trix composed from τj . Ml2p

j transform bone j into the
coordinate system of its parent bone p, which can be solely
determined by the bind-pose of the bones:

Ml2p
j = B−1

p Bj (9)

where Bp and Bj are the bind-pose matrix of bone p and
bone j, respectively.

With the introduction of these concepts, we complete the
dynamic adjustment process for bone binding with Eq. 6.
For details on the Dynamic Bone Binding process, refer to
Algorithm 1.

3. Face Registration
We conducted face registration experiments on

LYHM [3] and FaceScape [14] to evaluate the repre-
sentation capacity of different parametric face models. We
marked 7 key points on the ground-truth scans, consistent
with the NoW-Benchmark prototype [13]. We identified an



Algorithm 1: Dynamic Bone Binding

Input: ζ, τ ,ψ0,vt,B
0

// barycentric interpolation phase

1: for bone j in skeleton do
2: for triangle f in UV map do
3: if ζj falls within f based on Eq. 1 then
4: Update α, β, γ with f based on Eq. 2
5: Update ψj with α, β, γ based on Eq. 4
6: end if
7: end for
8: end for

// binding updated phase

9: for bone j in skeleton do
10: Update Bj with ψj and B0

j based on Eq. 7
11: Update Ml2p

j with Bj and Bp based on Eq. 9
12: Update Mtrs(τj) with τj and Ml2p

j based on Eq. 8
13: end for
14: for bone j in skeleton do
15: Update Tj with Mtrs(τj),

∏P
p=1 M

trs(τp) and Bj

based on Eq. 6
16: end for
Output: T

equivalent number of key points on the model’s topology
and utilized the 3D coordinates of 7 key point pairs to com-
pute global rigid transformation parameters as initial values
for fitting. We used the point mesh face distance()
function from PyTorch3D [12] to optimize the distance
between the ground-truth scan vertices and the nearest
triangle on the predicted mesh. We compared our model
with BFM [10], FLAME [8], CoMA [11] , FaceScape [14],
ImFace [15], and MetaHuman [5].

BFM uses a 199-dimensional shape basis and a 79-
dimensional expression basis in its optimization process.
FLAME employs a 300-dimensional shape basis, a 100-
dimensional expression basis, and rotation parameters for
two joints, neck and chin, total of 406 parameters. We re-
trained the encoder and decoder networks of CoMA with
64-dimensional latent vectors on the CoMA datasets. Dur-
ing fitting, we only optimized the latent vector while fixing
the decoder network parameters. FaceScape uses a 300-
dimensional shape basis and a 51-dimensional expression
basis, excluding the natural expression from the original
52-dimensional expression basis. To preserve the mesh’s
initial scale, we subtracted the sum of the remaining 51 di-
mensions to obtain the value of the natural expression ba-
sis. This approach ensured that the sum of all 52 expression
dimensions equaled 1, thereby reducing one degree of free-
dom. For ImFace, we converted the ground truth mesh to
SDF and fitted the corresponding z id and z exp using a
pre-trained network. We then converted the SDF results to

meshes and evaluated them in our metric-calculation proto-
type. For MetaHuman, we fitted all 9 degrees of freedom of
the bones to deform the meshes.

We utilized Adam optimizer in PyTorch [9] to optimize
the model parameters and the global rigid transformation
parameters, minimizing the point-to-face distance, while
adding regularization to avoid model artifacts. We kept the
same learning rate of 1e-3 and iteration steps of 300 for all
models, except for ImFace, for which we used the default
iteration steps of 1,500 as used in the released code.

4. Multi-view Face Reconstruction
Compared to Multi-view Stereo (MVS) without using

the face priors, parametric face models greatly reduce the
number of parameters to be solved, which alleviated the un-
derdetermined problem. We solved the multi-view face re-
construction with a parametric face model as an optimiza-
tion problem with constraints from multiple views. For all
the parametric face models in the experiments, we used the
predicted results from a single-view face reconstruction net-
work as the initial point for quick and stable convergence of
the optimization process.

4.1. Single-view Prediction Network

We followed Deng et al. [4] and built a reconstruction
network based on 3DMM. Given an image I captured from
one of the multiple views, we used a neural network to pre-
dict its parameter set X = (α,β, t,R), whereα and β rep-
resented the shape and expression parameters of the 3DMM
basis, respectively. The 3D face shape S could be repre-
sented by S = S̄+Bidα+Bexpβ. The translation t ∈ R3

and rotation R ∈ SO(3) represented the pose of the 3D
model with respect to the current camera position. We used
a perspective projection model to obtain the projected coor-
dinates p of the vertices v in image I as p = Π(Rv + t),
where Π(·) represented the perspective projection.

To obtain an initial shape for multi-view optimization,
we simply averaged the predicted α and β across multiple
views to obtain the initial face mesh.

S = S̄+Bidαmean +Bexpβmean (10)

To use the predicted face shape, an additional registra-
tion step is required to get initial model parameters to fit the
predicted mesh. For BFM and ASM with the same topology
as Deng et al. [4], the point-to-point loss was employed. For
FLAME and MetaHuman with different topologies, point-
to-face loss as described in Sec. 3 was used. For all the
models, the registration step was implemented with Adam
optimizer with a learning rate of 1e-3 and iteration steps of
300. These model parameters, together with pose parame-
ters, would be solved in the following optimization step for
multi-view reconstruction.



4.2. Energy Function

Landmarks. We used the facial key points prediction
method [2] to predict the positions of 68 facial key points
from the input image. We annotated the corresponding 68
vertices on the mesh and obtained the projected coordinates
of these vertices on the corresponding image with the per-
spective projection function. We then minimized the land-
marks term:

Elmk(v̂) =
1

N

N∑
n=1

||qn −Π(Rnv̂ + tn)||2 (11)

where qn were the key points from landmarks prediction,
and v̂ were the masked 68 vertices.

Regularization. We imposed constraints on the parameters
to be optimized in the parametric face models to prevent
over-fitting. For the ASM model parameters τ , ζ,π,µ,Σ,
we used the following shape priors:

Ereg(τ , ζ,π,µ,Σ) =λ1||τ ||2 + λ2||ζ||2 + λ3||π − π′||2+
λ4||µ− µ′||2 + λ5||Σ−Σ′||2

(12)

where π′,µ′,Σ′ were the initial parameters of ASM from
fitting the skinning weights generated by Blender. Here we
use λ1 = 1, λ2 = λ3 = λ4 = λ5 = 0.1

Edge. Due to the recent development of deep learning-
based face parsing algorithms, we could easily obtain a
refined segmentation of facial semantic area. We trained
a face segmentation network on the CelebaMask-HQ [7]
datasets, and with an image I we predicted its segmenta-
tion mask and extracted the face contour points set donated
as E for constraining the mesh’s contour.

To create the contour points set of the reconstructed face
model, we applied a rigid transformation with the predicted
pose parameters. We calculated the normal direction of
each vertex on the model surface and computed the absolute
value of the normal on the z-axis. We considered the z-axis
absolute value of the vertices normal less than a threshold
to be the points at the edge of the face model and included
them in the candidate set.

To ensure that only visible vertices were used, we uti-
lized z-buffering to determine whether the vertices in the
candidate point set are visible. This enabled us to screen
out the final contour vertices. Finally, we minimized the
edge term by extracting contour points from both the image
and the model contour points set.

Eedge(v
′) =

1

N

N∑
n=1

chamfer(En,Π(v̂n))

v̂ = {v′||N(v′)z| < θ and V (v′) > 0}

(13)

where v′ = Rnv + tn and θ was the threshold used for
distinguishing edge vertices. N(·) was the normal calcula-
tion function for vertices and V (·) was the z-buffering test
to decide whether vertex v was visible in the current frame,
respectively. In experiments, we used θ of 10◦.

Photometric Consistency. The photometric consistency
constraint method has found wide application in solving the
parameters of face models from multi-view images [1, 6].
The technique involves projecting the vertices of the mesh
onto images from various angles and sampling the corre-
sponding pixel intensities on the original image using the
projection coordinates p. Hernandez et al. [6] utilizes a 3x3
intensity patch centered around p to use the photometric
consistency. However, we have observed that this approach
is not ideal when the original vertex v lies on a plane with
significant depth variation. In such cases, the 3x3 patch in-
cludes pixel information with a broad depth range, resulting
in less accurate photometric consistency constraints.

To address this limitation, we projected and sampled the
intensity values for each vertex vj on the model and obtain
Sj = Γ(Π(Rvj + t)), where Γ(·) was the interpolation
function for sample the intensity on the projection coor-
dinate of vj . We then unwrapped the intensities of each
vertex to the UV space to obtain the UV-intensities map
U = Unwrap(S).

In the UV space, we performed Local Normalized Cross-
correlation (LNCC) on the UV map,

LNCC(Ui,Uj)

=
1

X

X∑
x=1

V (Si
x)V (Sj

x)NCC(P (U i
x), P (U j

x))
(14)

where V (Si
x)V (Sj

x) were the same z-buffering test func-
tion to decide the visible mask of points Si

x and Sj
x, re-

spectively. X were the total number of vertices. P (U i
x)

is the 3x3 sampling function around pixel U i
x, and NCC

was the Normalized Cross-correlation function. The LNCC
function captured the photometric information on the UV
space rather than the image space. This process generated
a sliding window that conformed to the mesh surface of the
model, accurately sampled the vertex intensities even in ar-
eas with significant depth variation, and reduced the depth
of field effect caused by sampling at a large scale.

We calculated the LNCC loss on the unwrapped UV
maps between any two frames in the input multi-view
images. We then minimized the photometric-consistency
term:

Epc(v) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

LNCC(Ui,Uj) (15)



4.3. Multi-view Optimization

We finally sum up all the energy terms and optimized the
parameters of ASM as:

Etotal = λ1∗Elmk+λ2∗Eedge+λ3∗Epc+λ4∗Ereg (16)

where λ1 = 0.001, λ2 = 0.4, λ3 = 100 and λ4 = 1 in
our experiments. We utilized Adam optimizer to optimize
the parameters of the model and the pose, minimizing the
energy term of Eq. 16. The same learning rate of 1e-4 and
iteration steps of 500 were used for all the models.
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Figure 2. More examples of fitting result on LYHM [3]. GT Scans stand for the ground truth scan used for fitting.
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Figure 3. More examples of fitting result on LYHM [3]. GT Scans stand for the ground truth scan used for fitting.
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Figure 4. More examples of fitting result on LYHM [3]. GT Scans stand for the ground truth scan used for fitting.
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Figure 5. More examples of fitting result on FaceScape [14] . GT Scans stand for the ground truth scan used for fitting.
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