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A. Implementation Details
A.1. Method Details

For the image branch, we chose ResNetl8 as the ex-
tractor, and the input images are randomly cropped and re-
sized to 224x224. To prevent the interactive subject and
object in the image from being cropped out, we set the
crop area outside the bounding box of the interactive sub-
ject and object, shown in Fig. 1. The image extractor
output the image feature F; € R®!2X7X7_ Then, utiliz-
ing the bounding boxes By;, B,y to calculate the scene
mask M. (outside these two boxes), taking them to lo-
cate the object, subject, and scene feature in F'1, next, apply
Roi-Align to obtain the same size object, subject, scene fea-
ture F;, F,, F, € R?12X4X4 reshape them to R®12%16, For
the point cloud branch, the number of points for each input
point cloud is fixed to 2048, we take 3 set abstraction (SA)
layers with multi-scale grouping to extract the point-wise
feature. Each SA layer uses Farthest Point Strategy (FPS)
to sample points, and the number of sampling points for
each layer is set to 512, 128, and 64 respectively. Finally,
this branch outputs the point-wise feature F,, € R512x64,
We show the dimension of tensors in the whole pipeline in
Tab. 1. In the implementation, the joint denotes combin-
ing the image and point cloud feature sequence at the last
dimension, like joint P and I as the object representation
F;.

Furthermore, here we make a more detailed explanation
for the KLD loss Lk . F; denotes the joint object rep-
resentation, and ¥, denotes the joint affordance represen-
tation. Since the order of the sequence does not change
in the calculation process, we split them back into image
and point cloud sequences. F,;, contains the affordance
feature distribution of each region in F;, the regions with

*Corresponding Author.

lhcl2@mail., forrest@}ustc.edu.cn

zhazj@ustc.edu.cn

Before Crop Cropped

Random Crop
|

Crop Area S R
[
|
|
|
|

Figure 1. Random Crop. Cropping in image augmentation, we
only do it outside the object and subject bounding boxes.

Table 1. Tensors. The dimension and meaning of the tensors in
the pipeline.

Tensor | Dimension | Meaning
Fi 512X 7Tx7 image extractor output
F, 512 x 64 point cloud extractor output
Fis.e 512 x 16 features output by roi-align
P 512 x 64 project F', to a feature space
I 512 x 16 project F; to a feature space
© 64 x 16 dense similarity between P and I
P 512 x 64 point feature with structural relevance
I 512 x 16 image feature with structural relevance
F; 512 x 80 joint object representation
Q 512 x 80 the query projected by F';
Ki, Ko 512 x 16 keys projected by Fs, Fe
Vi,Va 512 x 16 values projected by F's, Fe
©1,0, 512 x 80 interaction contexts
F. 512 x 80 joint affordance representation
Fp, Fpa 512 x 64 split from F;, Fq
F;, Fia 512 x 16 split from F;, Fg,
é 2048 x 1 3D object affordance

high correspondence to affordance possess more significant
features. This relative difference is reflected in the region
feature distribution, the insight is to make the distribution
of ]?‘i also keep the distribution characteristics of the F,
so as to implicitly enhance the affordance region features in
the object representation, shown in Fig. 2. And with the es-
tablishment of the correspondence between the image and
point cloud regions in the alignment process, this property



tends to be shown in Fp. This makes the region alignment
and affordance extraction exhibit a mutual mechanism, the
affordance representation could better correspond the ob-
ject affordance regions, and the object region features with
stronger correspondences could assist to extract more ex-
plicit affordance features in the optimization process. The
computation of L, is expressed as:

Lxr = KLD(F;,F;,) = ZFm"log(e + Fliafl)» (D

e+ Fi;,
where € is a regularization constant, n denotes the regions.
Since F;,, is split from F,, and F; is split from F;, Lk,
could optimize the layers for alignment in JRA, also the
layers for affordance extraction in ARM, expressed as:
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where ¢ is the number of steps, 7 is the learning rate, 6;
denotes the parameters of layers that tend to be optimized.

In JRA, for the learnable layers, we give the following
explanations. fs contains two 1 x 1 convolution layers,
which is used to project F; and F,, into a feature space.
fi, fp are utilized to map the region relevance of object fea-
ture from images and point clouds. After the feature extrac-
tion, the ), and F; represent sub-regions of the raw objects,
our aim is to map the spatial correlation among these sub-
regions. There are several ways to satisfy this mapping: 1)
Transformer-based. In this method, each sub-region fea-
ture can be regarded as a patch, then take the self-attention
technique to model the correlation among the patches. 2)
Expectation-Maximization Attention [10]. This method ini-
tializes a group of bases p, and then performs alternating
“E-step” and “M-step” to mine the correspondence between
object features from the image and point cloud. 3) Multi-
layer perception. This is the most direct way, which re-
gards all regions as a whole one and directly maps the intra-
relation among the region features. We conduct a compar-
ative experiment to see their performance and finally chose
the self-attention technique (see Tab. 5).

In ARM, for the extraction of affordance representation
F., we take the feature F'; as the object representation to
model the interaction contexts and reveal affordance. This
process could be regarded as fusing the image and point
cloud feature as the multi-modal representation and com-
pleting certain downstream tasks like affordance extraction.
And the feature alignment is performed implicitly during
optimizing the extraction, which is a learning-based way
[3]. Meanwhile, theoretically, the multi-modal feature con-
tains more information, for example, structures, colors, and
textures, which is also beneficial to the downstream task like
the extraction of affordance (see clarification in [9]).
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Figure 2. The Distribution. The right denotes feature distribution
of each region in F;,, with higher correspondence to af-
fordance keep more significant feature. And the goal is to let this
property exists in F;, so we narrow the distribution discrepancy
between Fl and F';,, to tune the feature distribution of FZ

A.2. Evaluation Metrics

We use four evaluation metrics to benchmark the PIAD.
AUC [11] is used to evaluate the predicted saliency map
on the point cloud. The average Intersection Over Union
(aloU) [18] is aimed at evaluating the overlap between the
affordance region predicted in the point cloud and the la-
beled region. SIMilarity (SIM) [21] is used to measure the
similarity between the prediction map and the ground truth.
Mean Absolute Error (MAE) [23] is the absolute difference
between the prediction map and ground truth for point-wise
measurement.

— AUC [11]: The Area under the ROC curve, referred to
as AUC, is the most widely used metric for evaluating
saliency maps. The saliency map is treated as a binary
classifier of fixations at various threshold values (level
sets), and a ROC curve is swept out by measuring the
true and false positive rates under each binary classifier
(level set).

— alOU [18]: IoU is the most commonly used metric for
comparing the similarity between two arbitrary shapes.
The IoU measure gives the similarity between the pre-
dicted region and the ground-truth region, and is de-
fined as the size of the intersection divided by the union
of the two regions. It can be formulated as:

B TP
" TP+ FP+FN’

IoU (3)
where T'P, F'P, and F'N denote the true positive, false
positive, and false negative counts, respectively.

— SIM [21]: The similarity metric (SIM) measures the
similarity between the prediction map and the ground
truth map. Given a prediction map P and a contin-
uous ground truth map Q”, STM(-) is computed as
the sum of the minimum values at each element, after



normalizing the input maps:

SIM(P,QP) =Y " min(P;,QP),
where ZPi = ZQ? =1.

— MAE [23]: The Mean Absolute Error (MAE) is a use-
ful measure widely used in model evaluations. The
calculation of MAE is relatively simple. It involves
summing the magnitudes (absolute values) of the er-
rors to obtain the “total error” and then dividing the
total error by n:

“4)

1 n
MAE = — il 5
- ; e (5)
where ¢; is the calculated model error.

A.3. Training Details

Our model is implemented in PyTorch and trained with
the Adam optimizer. The training epoch is set to 80. All
training processes are on a single NVIDIA 3090 Ti GPU
with an initial learning rate of 0.0001. The loss balance
hyper-parameters A1, A2, Az are set to 1, 0.3, and 0.5 respec-
tively, and the training batch size is set to 16. The image ex-
tractor uses the pre-trained parameters on ImageNet, while
the point cloud extractor is trained from scratch. In addi-
tion, since images and point clouds do not need strict one-
to-one pairing, we pair images and point clouds online dur-
ing training. An image could be paired with n point clouds
in one training step, which is equivalent to expanding train-
ing samples. In the training process, the loss of an image
and all paired point clouds is accumulated, and the gradi-
ent is calculated according to the accumulated loss. We set
n = 2 in our implementation.

B. Dataset
B.1. Data Samples

According to our collection principles, the object in the
image and point cloud belongs to the same category and the
image demonstrates the way in which the 3D object could
interact. For the interactive subject in the image, it could be
a human or just a human body part, this is in line with the
way humans learn from demonstrations, which usually only
needs to observe the specific parts that occur interactions.
Here, we give more data pairs in Point-Image Affordance
Dataset (PIAD), shown in Fig. 3.

B.2. Dataset Partitions

Here, we explain how the dataset is divided and the rea-
son for doing so. PIAD includes 23 object categories and 17

Figure 3. Examples of PIAD. Some paired images and point
clouds in PIAD. The “yellow” box in the image is the bounding
box of the interactive subject, and the “red” box is the bounding
box of the interactive object.

affordance classes, we divide it into two partitions: Seen
and Unseen. Seen includes all objects and affordances,
this partition is utilized to verify whether it is feasible to
ground 3D object affordance in such a learning paradigm.
The category of affordance corresponding to each object
and the number of images and point clouds in the training
set and testing set are shown in Tab. 2. A series of ex-
periments in the main paper has proved this kind of learn-
ing paradigm is achievable. However, embodied agents
commonly face the human space, and meet novel objects,
to facilitate the agents’ capabilities for anticipating novel
objects’ affordance, we make the Unseen partition. In
Unseen, serval objects do not exist in the training set. The
principle of the partition is that the affordance of unseen ob-
jects should have corresponding objects in the training set.
Eventually, we chose the following objects to the testing set



Table 2. Data Distribution. The affordance corresponding to each object and the number of its corresponding images and point clouds.

Objects Affordance ‘ Tmage ‘ Point

| Train Test | Train Test

Vase wrapgrasp,contain 186 46 209 46
Display display 210 52 253 52
Bed lay,sit 117 28 127 28
Microwave contain,open 111 27 130 27
Door push,open 105 25 108 25
Earphone listen,grasp 144 35 157 35
Bottle wrapgrasp,contain,open,pour 252 61 288 61
Bowl wrapgrasp,contain,pour 117 28 132 28
Laptop display,press 238 58 295 58
Clock display 38 9 205 9
Scissors cut,stab,grasp 43 10 49 10
Mug wrapgrasp,contain,grasp,pour 142 35 152 35
Faucet open,grasp 196 48 210 48
StorageFurniture contain,open 217 53 329 53
Bag contain,open,grasp,lift 74 15 88 15
Chair sit,move 797 199 1352 199
Dishwasher contain,open 84 20 117 20
Refrigerator contain,open 119 28 130 28
Table move,support 401 100 957 100
Hat wear,grasp 143 35 156 35
Keyboard press 100 25 110 25
Knife cut,stab,grasp 196 47 225 47
TrashCan contain,open,pour 120 28 221 28

as the unseen category: “Dishwasher”, “Microwave”, “Scis-
sors”, “Laptop”, “Bed”, “Vase”. It can be seen from Tab. 2
that the number of images and point clouds is not consis-
tent. They do not need a fixed one-to-one pair, an image
can be paired with multiple point clouds.

C. Experiments
C.1. Details of Modular Baselines

Since there is no previous work research grounding 3D
object affordance in such a cross-modal fashion, we se-
lect some advanced studies in the image-point cloud cross-
modal learning area to make the comparison experiment.
The common aspect of these works is that they extract the
feature of images and point clouds separately, and then align
or fuse the extracted features. These methods are divided
into two types: one is to use the camera intrinsic parameter
in the alignment or fusion module for obtaining spatial cor-
respondence, and the other is to align or fusion multi-modal
features directly in the feature space without using the in-
trinsics. For methods using the camera intrinsic parameter,
we remove the step that uses intrinsic parameters to verify
the effectiveness of such methods on the proposed task set-
ting, in which images and point clouds originate from dif-

ferent physical instances and it is infeasible to obtain spa-
tial correspondence through the assistance of camera priors.
All comparative methods share the same extractors with our
method, and the difference occurs subsequent to the extrac-
tion of F}, and F;.

— Baseline: For the design of baseline, we directly
concatenate the features that are output from the im-
age and point cloud extractors, let the concatenation
be a fusion block and there are no intermediate steps to
correspond the region features from different sources.

— MBDF-Net (MBDF) [22]: This work focus on 3D
object detection work. It has three branches: image
branch, lidar branch, and fusion branch. An Adap-
tive Attention Fusion Module (AAF) is proposed in
this work to fuse the features from the image and point
cloud. We take its AAF as the cross-modal block to
fuse the image and point cloud feature. And in AAF,
we remove the step that utilizes the inner parameters of
the camera to project the coordinates p(x, y, z) of each
point in the point cloud into the corresponding image
coordinate p/(z,y).

— PMF [27]: For 3D point cloud segmentation, this paper
designs a two-stream network to fuse the rich semantic



Table 3. Evaluation Metrics in Seen. Objective results of each affordance type for all comparison methods in the Seen. “cont.” denotes

LIS CLINTS

“contain”, “supp.” denotes “support”, “wrap.” denotes “wrapgrasp”, and “disp.” denotes “display”.

Method ‘Metrics‘grasp cont. lift open lay sit supp. wrap. pour move disp. push listen wear press cut stab

AUC |63.31 51.94 91.1 75.17 59.84 76.43 71.24 52.83 83.79 60.23 73.01 62.16 51.20 53.99 72.82 80.46 61.13
alOU | 3.89 4.65 9.55 4.17 6.69 8.70 7.33 3.88 7.04 4.69 7.66 420 521 4.16 493 532 557
SIM |0.387 0.3520.155 0.146 0.305 0.363 0.524 0.577 0.418 0.387 0.288 0.557 0.356 0.539 0.102 0.478 0.209
MAE |0.157 0.154 0.129 0.121 0.214 0.177 0.164 0.145 0.125 0.158 0.199 0.089 0.192 0.154 0.140 0.129 0.137

AUC |58.18 76.21 76.70 69.35 86.71 94.72 84.84 58.00 73.60 50.25 78.99 63.73 68.09 65.60 87.25 80.99 64.75
alOU | 6.10 8.60 12.06 5.20 10.7924.11 10.51 3.97 8.07 5.83 10.70 596 4.19 4.49 6.59 5.63 5.87
SIM |0.397 0.386 0.162 0.154 0.466 0.561 0.631 0.590 0.392 0.389 0.449 0.553 0.405 0.561 0.222 0.430 0.306
MAE [0.162 0.150 0.1290.139 0.151 0.109 0.128 0.147 0.148 0.191 0.147 0.121 0.166 0.144 0.131 0.126 0.142

AUC [60.90 73.90 78.03 70.73 87.48 95.22 82.66 57.56 82.71 50.14 80.22 63.94 61.34 61.53 87.96 82.09 65.44
alOU | 7.12 8.41 11.49 6.94 14.5225.50 7.83 4.21 892 591 15.86 6.18 3.15 2.87 6.76 3.03 4.09
SIM |0.426 0.3850.193 0.180 0.486 0.598 0.653 0.565 0.397 0.380 0.470 0.535 0.412 0.548 0.237 0.421 0.356
MAE |0.161 0.148 0.164 0.143 0.143 0.098 0.126 0.152 0.147 0.186 0.137 0.115 0.122 0.154 0.121 0.132 0.148

AUC |62.56 77.88 77.71 74.41 88.69 95.72 82.59 53.73 77.38 53.73 79.53 62.51 69.55 68.83 87.46 80.24 68.84
alOU | 7.36 9.12 11.51 7.39 15.0325.17 7.76 4.05 7.05 6.29 1593 5.17 4.70 2.79 6.58 4.97 4.41
SIM |0.423 0.387 0.182 0.189 0.494 0.591 0.644 0.559 0.399 0.376 0.475 0.543 0.431 0.560 0.234 0.421 0.385
MAE |0.148 0.144 0.160 0.137 0.137 0.094 0.124 0.132 0.136 0.173 0.136 0.116 0.162 0.148 0.119 0.131 0.132

AUC [62.4576.4377.17 74.84 88.08 94.99 82.77 51.84 82.59 52.15 80.08 62.93 68.68 64.34 87.84 82.59 66.51
alOU | 8.02 8.13 10.42 6.69 16.3526.72 7.90 4.97 8.18 597 17.25 484 5.10 3.46 6.93 5.51 4.22
SIM |0.393 0.3880.212 0.183 0.512 0.613 0.654 0.557 0.394 0.386 0.497 0.547 0.410 0.548 0.231 0.440 0.379
MAE |0.144 0.148 0.158 0.141 0.133 0.095 0.127 0.136 0.147 0.172 0.132 0.107 0.173 0.146 0.108 0.123 0.139

AUC [65.12 78.43 84.5274.12 89.50 95.47 82.88 51.00 82.02 52.37 84.69 67.45 69.98 67.08 87.63 85.94 67.30
alOU | 9.25 9.86 11.43 8.48 12.0725.39 7.59 495 6.07 6.22 18.14 3.83 6.63 4.68 7.42 6.22 4.26
SIM |0.387 0.392 0.223 0.156 0.445 0.616 0.651 0.573 0.396 0.387 0.505 0.569 0.490 0.554 0.230 0.402 0.385
MAE [0.139 0.138 0.133 0.1320.138 0.095 0.125 0.131 0.157 0.196 0.128 0.096 0.173 0.148 0.103 0.142 0.155

AUC |62.98 79.97 78.93 79.74 88.93 94.91 84.56 56.47 82.15 54.97 82.91 63.74 74.93 70.57 88.18 79.17 69.97
alOU |12.82 10.41 13.24 9.17 17.0026.65 7.89 524 7.81 6.46 17.25 2.68 531 534 7.87 6.35 5.88
[ SIM |0.415 0.401 0.334 0.184 0.427 0.619 0.659 0.569 0.399 0.391 0.508 0.535 0.433 0.565 0.237 0.427 0.394
MAE |0.121 0.131 0.138 0.131 0.1290.093 0.119 0.128 0.159 0.192 0.127 0.083 0.164 0.129 0.113 0.135 0.152

AUC |77.53 83.84 95.05 90.89 93.54 95.94 84.58 66.71 86.02 63.09 89.29 84.71 87.13 71.16 89.46 86.69 76.41
alOU (16.83 17.1231.9528.3931.8037.72 12.04 6.02 20.33 5.57 30.57 1.79 15.59 6.55 14.4212.95 9.48
SIM |0.530 0.534 0.368 0.401 0.685 0.723 0.716 0.571 0.525 0.443 0.657 0.418 0.671 0.563 0.402 0.507 0.280
MAE |0.108 0.093 0.030 0.044 0.081 0.066 0.100 0.143 0.096 0.174 0.084 0.085 0.090 0.129 0.059 0.085 0.099

Baseline

MBDF [22]

PMF [27]

FRCNN [25]

Ours

on both features, then, the point cloud feature is re-
garded as a query, and the image feature is regarded as
key and value, using a cross-attention to fuse them. In
the whole pipeline, this operation is performed twice.
We fuse the image and point cloud feature with the
aforementioned scheme.

information provided by images with point cloud fea-
tures to obtain more fine-grained results. For the multi-
modal feature fusion, it devises a residual-based fusion
model to concatenate image and point cloud features
and uses convolution and attention to calculate the fu-
sion feature, and finally, residual connection with the
point cloud features. We use the RF module to fuse
features that are from different sources and remove the
step which projects the point cloud to the camera coor-
dinate system by perspective projection.

— [4]: This research uses images
to support the registration of low-overlap point cloud
pairs. Its purpose is to use images to provide informa-
tion for the low-overlap regions of point cloud pairs,

— FusionRCNN (FRCNN) [25]: This work first ex- S0 as to support the registration, it is the SOTA on low-

tracts proposals in the image and point cloud respec-
tively and then fuses these proposals by cross-attention
and self-attention. Specifically, for the extracted point
cloud and image features, performing a self-attention

overlap point cloud pairs registration task. It also ex-
tracts the image and point cloud features separately,
and in the fusion module, it projects image features
into the 3D feature space through a learnable map-



Table 4. Evaluation Metrics in Unseen. Objective results of each affordance type for all comparison methods in the Useen. “cont.”

<,

denotes “contain”, “wrap.” denotes “wrapgrasp”

Method ‘Metrics‘cont. lay sit wrap. open display stab grasp press cut

AUC |60.1576.08 63.89 40.15 72.41 37.84 51.3743.77 61.51 69.55
alOU [4.49 1031 5.16 1.30 3.30 2.88 3.06 2.41 4.18 5.39
SIM (0.3510.4500.370 0.448 0.126 0.061 0.267 0.166 0.228 0.379
MAE |0.157 0.153 0.157 0.181 0.117 0.385 0.147 0.146 0.141 0.112

AUC [62.8176.8064.30 41.47 73.25 45.26 61.75 46.62 65.57 75.69
alOU |5.09 11.28 5.63 1.52 3.68 394 335 242 4.64 6.36
SIM (0.3640.464 0.379 0.418 0.133 0.148 0.279 0.168 0.236 0.382
MAE |0.151 0.1490.152 0.177 0.108 0.286 0.124 0.150 0.137 0.098

AUC [64.10 80.54 64.89 42.02 74.86 51.62 68.93 48.44 65.98 79.05
alOU |5.15 13.16 5.83 1.59 3.85 3.19 431 2.83 497 7.93
SIM (0.368 0.465 0.381 0.448 0.139 0.123 0.313 0.174 0.245 0.387
MAE |0.148 0.147 0.153 0.172 0.102 0.262 0.113 0.144 0.135 0.094

AUC |64.1184.18 66.37 44.27 74.77 48.12 71.58 49.32 67.58 82.46
alOU |5.54 13.72 6.28 1.56 396 4.64 447 3.13 5.13 8.74
SIM (0.3840.4810.389 0.463 0.143 0.131 0.341 0.189 0.263 0.394
MAE |0.1420.1420.147 0.173 0.099 0.258 0.107 0.137 0.1300.085

AUC [66.76 83.17 65.87 42.21 73.75 54.5 68.48 48.97 66.51 81.42
alOU |5.87 13.39 5.78 1.71 3.87 473 439 3.05 5.05 8.17
41 SIM (0.3820.4740.385 0.419 0.140 0.118 0.312 0.187 0.259 0.392
MAE |0.1450.1450.151 0.167 0.096 0.274 0.112 0.129 0.1320.091

AUC [65.56 83.3567.54 42.70 76.03 56.93 69.05 52.23 68.81 82.39
alOU |5.92 13.56 6.83 1.63 4.14 5.14 427 379 5.25 9.64
[24] SIM |0.3960.4830.391 0.47 0.151 0.072 0.334 0.234 0.2620.413
MAE [0.1400.1390.145 0.163 0.096 0.255 0.091 0.123 0.128 0.083

AUC [67.98 84.02 68.45 45.74 78.53 62.2 76.92 59.19 69.32 85.87
alOU |6.29 15.10 7.29 142 432 6.20 6.12 397 5.71 13.95
1 SIM |0.4120.503 0.403 0.451 0.156 0.075 0.351 0.278 0.270 0.435
MAE [0.1370.1350.144 0.156 0.094 0.240 0.087 0.117 0.124 0.078

AUC [67.96 84.8271.10 56.39 90.91 85.51 98.83 78.60 68.07 95.95
alOU | 7.24 18.12 8.47 1.89 12.28 16.28 10.39 4.79 4.22 21.47
SIM 0.4300.525 0.407 0.556 0.227 0.393 0.437 0.533 0.194 0.599
MAE [0.1250.1300.143 0.150 0.050 0.130 0.044 0.102 0.122 0.057

Baseline

MBDF [22]

PMF [27]

FRCNN [25]

Ours

ping. Then, applying the attention mechanism fuses
point cloud feature, image feature, and the projected
3D feature in turn. We take this mechanism to fuse
image and point cloud features in implementation.

dense fusion to get the fusion feature finally. And we
apply this operation to implement the fusion of image
and point cloud features.

- [1]: This study focus on point cloud

— [24]: This is an early completion, it is the SOTA on cross-modal point cloud

work towards 3D object detection. It also extracts the
features of the point cloud and image respectively. For
the fusion of different modal features, its processing
method is relatively simple. The image branch even-
tually outputs a global feature, while the point cloud
branch outputs a global feature and point-wise feature,
the two global features and the point-wise feature do

completion task. It proposes XMFnet, which is com-
posed of two modality-specific feature extractors that
capture localized features of the input point cloud and
image, then, it uses the combined cross-attention and
self-attention to fuse the features of the two modali-
ties. And we apply this block to compute the image
and point cloud feature in the pipeline.



Table 5. Techniques. Results of different techniques for project-
ing the region relevance in Seen and Unseen. S-Atten. denotes
self-attention, EM-Atten. denotes Expectation-Maximization At-
tention, and MLP denotes multilayer perception.

Setting | Metrics | S-Atten. EM-Atten. MLP

AUC 85.16 82.37 82.93
aloU 21.20 16.03 17.56

Seen | oM | 0.564 0521  0.527
MAE | 0.088 0.102  0.948
AUC | 73.69 67.45  68.12
alOU | 8.70 6.78 7.04
Unseen

SIM 0.383 0.429 0.432
MAE 0.117 0.174 0.159

Table 6. Different Backbones. Results of Seen and Unseen set-
tings in different backbone networks. En. P indicates the extractor
of the point cloud, En. I indicates the extractor of the image. PN
is PointNet++ [17], PM is PointMLP [ ]3] and Res is ResNet [8].

Setting |En.P| En.I | AUC alOU SIM MAE

Resl18 | 85.16 21.20 0.564 0.088
PN |Res34|85.45 2132 0.569 0.086
Res50 | 85.52 21.40 0.569 0.082

Seen
Res18 | 84.89 19.47 0.543 0.095
PM | Res34 | 8498 19.66 0.548 0.088
Res50 | 85.31 19.93 0.554 0.084
Res18|73.69 8.70 0.383 0.117
PN |Res34|73.78 8.70 0.387 0.107
Res50 | 73.83 8.82 0.393 0.101
Unseen

Res18 | 70.11 8.29 0.436 0.146
PM |Res34|70.76 8.67 0.440 0.142
Res50 | 71.05 8.83 0.447 0.136

C.2. Metrics of Each Affordance

We give the overall results of each method in the main
paper. Here, we display the results of each affordance re-
spectively. The experimental results of all methods in Seen
are shown in Tab. 3. And Unseen results are shown in Tab.
4. As can be seen, our method achieves the best results un-
der most affordance categories, which demonstrates the su-
periority of our method in grounding 3D object affordance.
These results indicate that our model has great performance
whether it is for unseen objects or structures that have not
been mapped to a certain affordance, which also indicates
the stability and the generalization of our model. At the
same time, other methods also achieve considerable objec-
tive results under our setting, which proves the rationality
of the setting.

C.3. Techniques for Establishing Relevance

To investigate the way of mapping the region rele-
vance, we conduct a comparative experiment to explore
the performance of the aforementioned three techniques.
They are transformer-based (self-attention), expectation-
maximization attention (EMA), and multilayer perception
(MLP). The results of metrics in Seen and Unseen are
shown in Tab. 5. As can be seen from the table, MLP
and EMA get sub-optimal performance. We analyze the
possible reason is that the region features are derived from
different sources, so there are gaps among corresponding
region features, MLP cannot effectively establish the map-
ping. Similarly, EMA is also difficult to excavate the re-
gion correlation with a group of bases. While self-attention
calculates the correlation between every two regions from
different sources, there exists a certain relative difference in
these correlations, and this relative difference could make it
match the corresponding regions of different sources. Based
on the above results, we finally choose the self-attention.

C.4. Different Backbones

To verify the effectiveness of the framework and the in-
fluence of the backbone, we test another backbone network.
We use a recently advanced network PointMLP [13] as the
point cloud backbone, it also extracts features of the point
cloud hierarchically. In addition, we also test the impact
of the model scale on performance, for each point cloud
backbone, we take ResNet18, ResNet34 and ResNet50 [8]
as the image feature extractor respectively. The evaluation
results are shown in Tab. 6, as can be seen from the re-
sults, the backbone network does not have a significant im-
pact on the final performance. The larger backbone network
could improve the performance, but the improvement is rel-
atively limited. To make the model effective and keep it
lightweight, we select PointNet++ and ResNet18 as the fi-
nal backbone networks.

C.5. Different Hyper-parameters

To explore the impact of each hyper-parameter on the
total loss, we conduct a comparative experiment of these
hyper-parameters. The experimental results are shown in
Tab. 7. \p is the coefficient of Lg s, and it accounts for
the highest proportion of the total loss, the reduction of \;
will have a greater impact on the performance. As is the
coefficient of affordance category loss Lo g, and Ag is the
coefficient of the KL loss Lk ,. The best result is to set Ay
to 0.3 and A3 to 0.5. Whether they increase or decrease,
the performance of the model is affected. In addition, we
remove Lk to test the performance, from the result, we
can see that lacking L degrades the model performance.



Table 7. Hyper-Parameters. The influence of hyper-parameters
that balance three losses in the total loss. The last row represents
the performance of the model when removing Lk ..

Seen ‘ Unseen

A1 Az As‘
|AUC alOU SIM MAE|AUC alOU SIM MAE

1 0.30.5/85.16 21.20 0.564 0.088|73.69 8.70 0.383 0.117
0.8 0.3 0.5|83.16 18.25 0.532 0.116]69.98 7.25 0.421 0.175
1 0.30.7|83.78 18.93 0.537 0.112{70.13 7.52 0.429 0.168
1 0.3 0.3|83.49 18.88 0.533 0.114|70.09 7.47 0.426 0.173
1 0.50.5|83.93 19.25 0.552 0.104|70.95 7.85 0.432 0.156
1 0.1 0.5|83.42 19.12 0.546 0.115|70.17 7.60 0.425 0.163
1 03 0(82.42 16.94 0.528 0.183]68.23 6.92 0.402 0.273

Table 8. Pairing Count. One image could be paired with multiple
point clouds for training. Different pairing counts have an influ-
ence on the model performance.

Setting | Metrics | 1 2 4 6

AUC |84.75 85.16 85.44 84.82
alOU | 1945 21.20 21.83 20.15

Seen | oIM | 0.540 0.564 0571 0.558
MAE |0.095 0.088 0.083 0.090
AUC |69.98 73.69 73.72 71.32
alOU | 837 870 872 858
Unseen

SIM | 0.375 0.383 0.391 0.380
MAE |0.130 0.117 0.106 0.121

C.6. Different Pairing

Since images and point clouds originate from different
physical instances, one image could be paired with multiple
point clouds for training, which can increase the diversity of
training data pairs and make the trained model more robust.
We test the difference in pairing count and the results are
in Tab. 8. When the number of pairings is set to 2, the
model performs well, and when it is set to 4, it achieves
better results, but the training time is doubled. If the number
of pairs is 6, due to the limitation of computing resources,
the batch size has to be reduced, so the performance drops
instead. Considering the above situations, we finally chose
to set the pairing count to 2 in the implementation.

C.7. More Visual Results

We show more visual results of comparative methods
and our method in Seen and Unseen partitions. Fig. 5
shows the result in the Seen and Fig. 6 shows the re-
sult in the Unseen. In addition, we also provide more
visual results of our method in all partitions, which shows
in Fig. 7. It can be seen from the visual results that our
model is able to anticipate the accurate affordance of ob-
ject functional components from diverse interactions and
across multiple object categories, reflecting its stability, ro-
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Figure 4. Potential Applications. This work has the potential to
bridge the gap between perception and operation, serving areas
like demonstration learning [2, 19], and may be a part of human-
assistant agent system e.g. Tesla Bot, Boston Dynamics Atlas [16].

bustness, and generalization. Plus, for methods that directly
map affordance to specific structures, we present a visual
comparison of results between it and our method, shown in
Fig. 8. It can be seen from the visual results that this type of
method is limited in generalization to the unseen structure.

C.8. Partialness and Rotation

Following the setting proposed by 3D-AffordanceNet
[7]. We make experiments to test the model performance
on partial and freely rotating point clouds, which also sim-
ulate the occlusion and rotation of objects in the daily en-
vironment. The detailed sampling methods of the partial
and freely rotating point clouds could be found in 3D-
AffordanceNet [7]. Fig. 9 shows the test results. It can
be seen from the results that even if the point cloud only has
a partial structure or is randomly rotated, our model can still
anticipate 3D object affordance on the corresponding geo-
metric structure. This shows the 2D interactions provide
various clues for the model to learn the correlation between
geometric structure and affordance. And it could be gener-
ated for variable object situations.

D. Potential Applications

Object affordance grounding could serve as a link in the
embodied system, supporting many down-stream potential
applications, as shown in Fig. 4.

¢ Embodied Artificial Intelligence. Embodied Al [20]
is to enable agents to interact with the world from pas-
sive perception to active reasoning. The key step to ac-
tively understanding the physical world is to know how
to interact with the surrounding environment, which is
a fundamental skill for embodied agents. And the pre-
condition for the agent to interact with the environment
is perceptive the object. Currently, there are some sen-
sors like LIDAR and depth cameras that could sam-
ple 3D scene data, and obtain point clouds or depth
maps. Meanwhile, many techniques support obtain-
ing a representation of the object from such data. The
most direct is to segment or detect the object. Some
methods generate the 3D object representation from
2D sources [15]. The above works ensure obtaining



the objects’ representation in the scene and support the
affordance anticipation system. Anticipating the af-
fordance makes the agent know what action could be
done and which location supports the corresponding
action on the object representation, which bridges the
gap between perception and operation. Such an abil-
ity has applications in navigation and manipulation for
embodied agents [ 14, 26].

Imitation Learning. Imitation learning is a common
approach to training intelligent agents to perform tasks
by observing demonstrations from humans or other
agents. However, a key challenge in imitation learn-
ing is the ability to generalize to new scenarios and en-
vironments that the agent has not encountered during
training. This challenge arises because the agent in-
fers the intentions and goals of the demonstrator from a
limited set of observed objects or scenes, and must de-
termine how to adapt those actions to the new context.
Affordances are the perceived properties of objects or
environments that suggest how they can be used or in-
teracted with. In the context of imitation learning, af-
fordances could help the agent to better understand the
demonstrator’s intentions and goals by identifying the
relevant objects and actions in the environment that the
demonstrator is using. By recognizing the affordances,
the agent can infer the most likely next action, and can
therefore learn to imitate their behaviors more accu-
rately [12].

Augement Reality. Augmented reality (AR) is cur-
rently considered as having potential for daily appli-
cations. By anticipating the 3D affordance of objects
in the 3D physical world, more practical functions can
be brought to AR devices. For example, if an object
needs to be repaired, just send a demo image or video
to the user, and then the AR device anticipates the cor-
responding 3D affordance according to the demo to
provide operational guidance. It has high application
value in such fields as after-sale service, device main-
tenance, installation industry, and so on. [5].

Virtual Reality. Nowadays, virtual reality (VR) is
more and more widely used in the entertainment, on-
line games, and education industries. It provides a vir-
tual environment for people to interact with the three-
dimensional virtual scenario. Some online games or
entertainment projects will provide some novel inter-
action scenes to interact with players. An affordance
system can play the role of an NPC to provide inter-
action guidance for users and improve the user experi-
ence. [0].
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Figure 5. Visual results in Seen. We give some visual results of all comparison methods and our method in the Seen.
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Figure 6. Visual results. We give some visual results of all comparison methods and our method in the Unseen.
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Figure 7. Visual results of Our Method. We give more results of our method in Seen, Unseen.
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