
Supplementary Materials

In this supplementary material, we provide additional
details about the experimental settings, codes, cross-modal
encoder architecture, differentiable Top-K operator, ratio-
nality of T2W attention, computation cost and more detailed
visualization results.

A. Architecture Details
Here we describe the implementation details of our

asymmetric cross-modal encoder, which contains a stack
of layers. As shown in Figure A1, each layer contains
a W2P attention block and a T2W attention block. Both
blocks perform a series of operations such as multi-head
attention, normalization (norm) and multi-layer perception
(MLP). Specifically, given video tokens V l and text tokens
X l as inputs, W2P and T2W attentions respectively output
V l+1 and X l+1, which are used as the next layer’s inputs.

B. Differentiable Top-K
Here we describe the implementation details of differen-

tiable frame-selector module. Given the importance scores
s generated from the scorer network (cf. Section 3.3 in the
main text), we select the indices of K highest scores, denot-
ing as M ∈ RT×K , where each column in M is a one-hot
(T ) dimensional indicator. We keep Top-K most relevant
frames by:

V̂ = MTV . (a)

To learn the parameters of the scorer network using an end-
to-end training without introducing any auxiliary losses, we
resort to the perturbed maximum method [1] to construct a
differentiable Top-K operator. In particular, selecting Top-
K frames is equavalent to solving a linear program of the
follwing form:

argmax
M∈C

⟨M , s⟩. (b)

where M is the optimization variable and C is the convex
polytope constrain set. We follow [1] to calculate forward
and backward operations to solve Eq. (b)

C. Rationality of T2W
Theoretically, we illustrate why T2W emphasizes more

continuous frames than P2W. To simplify, we adopt single-
head attention for subsequent computations. Assume a
video contains T × N tokens, where T and N denote the
frame number and token number per frame, and vn

t de-
notes the n-th token in the t-th frame. Given the query
word, P2W calculates attention weights α over all N × T
features: zP2W =

∑T
t=1

∑N
n=1 αN×(t−1)+nv

n
t where∑N×T

k=1 αk = 1, while T2W respectively uses Eq. (3)& (4)
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Figure A1. Detailed architecture of Cross-modal encoder.

to calculate two sets of attention weights γ and β: zT2W =∑T
t=1 βt(

∑N
n=1 γ

n
t v

n
t ) where

∑T
k=1 βk = 1 and ∀t ∈

1, .., T ,
∑N

n=1 γ
n
t = 1. When certain frames exhibit more

salient patterns corresponding to the query word, P2W’s α
will be larger in these frames, yet smaller α in others due
to

∑N×T
k=1 αk = 1. Consequently, P2W tends to focus

on these episodic frames with salient patterns. However,
T2W’s γ for different frames are calculated independently,
preventing one frame’s salient pattern from obscuring oth-
ers. Thus Eq. (4) in T2W has more opportunities to attend
to each continuous frame. As a result, we claim that T2W
will not act as P2W which tends to focus only on certain
episodic frames. Quantitatively, we calculate the entropy of
the attention weights for each frame to check which method
attends to more frames. For T2W and P2W, the attention
weight of the t-th frame are respectively represented as βt

and
∑N

n=1 αN×(t−1)+n. We use the MSRVTT test set and
sample 8 frames per video, which means the entropy upper
bound is log8 = 3. The average entropy for T2W and P2W
is 2.94 and 2.39 respectively. The higher entropy for T2W
demonstrates that it can attend to more frames compared to
P2W. These discussions will be added in revision.

D. Fine-tuning Setups
Here we describe the implementation details for fine-

tuning the pre-trained model. All downstream tasks receive
input frames of resolution 224×224. During fine-tuning,
we randomly select Nv frames from the video. We use the
same RandomAugment, AdamW optimizer, weight decay.
The default settings for fine-tuning on each dataset are in
Table A2. During inference, we do not use augmentation



and sample uniformly.

E. Codes
Our main code is in “TW-

BERT/src/modeling/TW BERT model.py”, which
is provided in the supplementary materials. We
perform the W2P and T2W attention (cf. Sec-
tion 3.2 in the main text) in function “cross-
modal encoder”, which is implemented in the file “TW-
BERT/src/modeling/cross modal bert/cross models.py”.
Both two attention operation are
implemented in the file “TW-
BERT/src/modeling/cross modal bert/cross attention.py”.
In the file “TW-BERT/src/modeling/timesformer/vit all.py”,
we implement the Hierarchical Frame-Selector (cf. Section
3.3 in the main text) in class “VisualFrameSelection”, and
the differentiable Top-K operator in class “PerturbedTopK-
Funtion” and “PredictorLG”.

F. Computation Cost
Table A1 shows FLOPs/parameters/runtime of diverse

settings corresponding to Table 2&3, with FLOPs and in-
ference time measured by 1 and 100 samples, respectively.
We assert that HFS lessens computational demands since
it filters input frames, retaining only relevant ones for the
cross-modal encoder. Thus, valuable temporal knowledge is
preserved while using fewer frames. For example, we addi-
tionally implement F@32 for QA, whose accuracy is 48.6,
F@32-24-16 gets 48.5 while uses less computation burdens
due to less input frames. Also, comparing F@16 to F@32-
24-16, there’s a modest increase in training demands: 4M
parameters, 1.26× FLOPS, and 1.21× inference time.
Table A1. Computation cost comparison with different settings.

Layers FLOPs(G) Params(M) Time(s) Frame FLOPs(G) Params(M) Time(s)
F@8 325.0 232 11.0
F@20-14-8 445.7 236 12.4

[2,4] 569.5 236 14.0 F@12 430.0 232 12.9
[3,6] 602.4 236 14.9 F@24-18-12 534.3 236 14.2
[4,8] 635.4 236 15.6 F@16 555.0 232 13.8
[5,10] 668.4 236 16.2 F@32-24-16 701.3 236 16.7
[6,12] 701.3 236 16.7 F@32 955.0 232 22.0

G. Qualitative Results
In Figure A2, we show more qualitative results of the

heat maps of the attention weights of TW-BERT from five
downstream datasets. TW-BERT selects the most relevant
frames according to the whole text, then it appears to im-
plicitly form a trajectory across time for a given query word
to avoid over-exploiting the trivial spatial contexts.

H. Limitation
Despite the effectiveness of TW-BERT across a wide

range of downstream video-language tasks, our model still
has limitation: we provide a novel perspective to consider

the videos that are composed of moving object trajectories.
Our method benefits from temporal knowledge in the video
and thus if a downstream task contains a few temporal con-
texts, the effect of T2W attention (cf. Section 3.2 in the
main text) may not be obvious.
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Table A2. Fine-tuning hyper-parameters of different tasks.

Config MSRVTT-Ret DiDeMo-Ret LSMDC-Ret ActivityNet-Ret MSRVTT-QA MSVD-QA

learning rate 2.5e-5 4e-5 4e-5 4e-5 5e-5 5e-5
learning rate schedule linear decay linear decay linear decay linear decay linear decay linear decay
weight decay 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
batch size 64 96 96 80 96 96
train epochs 5 10 10 10 10 15
warmup ratio 0.1 0.1 0.1 0.1 0.1 0.1
max text length 40 50 40 50 40 40
selection layer [6,12] [6,12] [6,12] [6,12] [6,12] [6,12]
frame number 20-14-8 20-14-8 20-14-8 20-14-8 32-24-16 32-24-16
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(c) “Boy rides bike in background” (d) “Little boy stands up and starts walking with his toy”

(e) “Someone brings food to the table” (f) “Liberty Bell smiles slowly”

(g) “A female lifter lifts a barbell over her head” (h) “A man is pushing a lawn mower across a lawn”

(i) “A man cutting up a fruit” (j) “Spreading butter on a roll”
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Figure A2. Visualizations of the attention maps from cross-modal encoder. Sample (a) and (b) are from MSRVTT [6], (c) and (d) are
from DiDeMo [3], Sample (e) and (f) are from LSMDC [5], (g) and (h) are from ActivityNet [4], (i) and (j) are from MSVD [2] dataset.
TW-BERT first discards irrelevant frames (the ones without blue backgrounds), then attends to the patches related to given query word by
Trajectory-to-Word attention.


