
Supplementary Material: Out-of-domain GAN inversion via Invertibility
Decomposition for Photo-Realistic Human Face Manipulation

1. Summary

In this supplementary document, we will give more de-
tails about our model architecture, loss function, and train-
ing strategy in Sec. 2.1, 2.2, and 2.3, respectively. Also, we
conduct more experiments and display more visual results.

2. Implementation Details

2.1. Model Architecture

In our main paper, we introduce our face inversion
framework with invertibility decomposition. Our model
consists of three parts: the encoder, the generator, and the
spatial alignment and masking module (SAMM).

𝑥

𝑤!, 𝑤", …

Encoder

𝑓# 𝑔# Generator

Co
nv

 1
×

1
Co

nv
 1
×

1
Co

nv
 1
×

1

𝐹#

Figure 1: The encoder [15] and the generator [8] architec-
ture, where the “Conv 1× 1” denotes the vanilla 2D convo-
lution module and the kernel size is 1.

1. Grid sampling

*

* （ 1 - ）

+

2. Blending

+

SAMM

ConcatCycle Alignment + * Mulitiply

f! 𝑔!

𝑔!′

𝑚!,#

𝛿!$, 𝛿!
%

Figure 2: The spatial alignment and masking module.

f! 𝑔!

⨁ InstanceNorm2d

BottleNeck_1

BottleNeck_2

𝑚!,#𝛿!
$, 𝛿!

%

Conv 1×1

+

Conv 3×3

Bottle-
Neck_2

SAMM
+

Conv 3×3

Bottle-
Neck_1

InstanceNorm2d

Conv 3×3

Conv 3×3

InstanceNorm2d

InstanceNorm2d

Figure 3: The network architecture of SAMM.

Encoder and generator. We adopt the official PyTorch
implementation of the e4e [15] and ReStyle [1] encoder
with their official pre-trained checkpoint. The encoders are
trained with a StyleGAN2 [8] generator pre-trained on the
FFHQ [7] dataset. We especially choose the ReStyle en-
coder which shares the same architecture as the e4e encoder
for convenience. We fix all the parameters of the pre-trained
encoder and generator during our experiment. In Fig. 1, we
visualize the encoder and generator architecture. Because
the intermediate feature maps extracted by the encoder do
not match the shape of generated features gi, we also train
1 × 1 convolution layers at each resolution to produce fi
from Fi. Especially, we obtain gi after the style modulated
convolution [8] but before the noise injection from each up-
sampling convolution block in the StyleGAN2 generator. In
this paper, we select the feature maps at multiple resolutions
from the encoder and generator for optical flow computa-
tion and invertibility mask prediction. For the ReStyle en-
coder which iteratively encodes the images to latent codes,
we only extract the feature maps in the last iteration. The
shapes of the feature maps are shown in Tab. 1.

Layer i Fi fi, gi
1 32× 32× 256 32× 32× 512
2 64× 64× 128 64× 64× 512
3 128× 128× 64 128× 128× 256
4 256× 256× 64 256× 256× 128

Table 1: The shapes of feature maps in our experiments.

Spatial Alignment and Masking Module (SAMM). In our
main paper, we introduce the spatial alignment and mask-
ing module, which estimates the optical flow and mask from
fi ⊕ gi, where ⊕ is the concatenation operator. In Fig. 3,
we illustrate the network architecture of our SAMM mod-

1

ule. Especially, for each layer in Tab. 1, we train a corre-
spond SAMM. The SAMM consists of the InstanceNorm
(IN) module [16] and the BottleNeck modules [13]. For
convenience, we define the following terms:

• Conv(cin, cout, k) denotes the vanilla 2D convolution
layer with stride 1, where k is the kernel size.

• BottleNeck 1(cin) denotes the layer with a residual
connection between the input and Conv(cin, cin, 3)-
PReLU-Conv(cin, cin, 3)-IN layer, as visualized in
Fig. 3.

• BottleNeck 2(cin, cout) denotes the layer with a resid-
ual connection between the Conv(cin, cout, 1)-IN layer
and Conv(cin, cout, 3)-PReLU-Conv(cout, cout, 3)-IN
layer, as visualized in Fig. 3.

We summerize the architecture of SAMM for each layer i
in Tab. 2.

Layer i SAMM architecture
1 IN-BottleNeck 1(1024)-BottleNeck 2(1024, 3)
2 IN-BottleNeck 1(1024)-BottleNeck 2(1024, 3)
3 IN-BottleNeck 1(512)-BottleNeck 2(512, 3)
4 IN-BottleNeck 1(256)-BottleNeck 2(256, 3)

Table 2: The architecture of SAMM in our experiments.

2.2. Loss Function

In our main paper, we introduce our loss functions, in-
cluding the reconstruction loss Lrec, the adversarial loss
Ladv , and the mask regularization loss Lmask. Here, we
will introduce more details about the perceptual loss Lper

in Lrec and the Ladv .
Perceptual loss. Our perceptual loss Lper contains the fea-
ture loss Lfeat and the style loss Lstyle. With a VGG19 [14]
feature extractor Φ(x), the feature loss and style loss are
calculated by:

Lfeat(x, x̂) =
∑
i

λiE(||Φi(x)− Φi(x̂)||), (1)

Lstyle(x, x̂) =
∑

i λiE(||Gram(Φi(x))−Gram(Φi(x̂))||), (2)

where Gram(·) is the Gram matrix [6] of the input tensor,
Φi(·) means extracting the i-th layer’s feature from VGG,
and E is the mean operation. Following [18], we use the
{“conv 1”, ..., “conv 5”} features before the activation for
loss calculation and λi is the weight of the loss on different
layers. We have:

Lper(x, x̂) = Lfeat(x, x̂) + λstyleLstyle(x, x̂), (3)

and λstyle is the style loss weight which we set to 50 in most
experiments.
Adversarial loss. In our training stage, we also involve the
adversarial loss [8] with a discriminator D:

Ladv(x̂) = −E[softplus(D(x̂))]. (4)

And the discriminator D is trained to minimize the discrim-
inator loss LD:

LD(x, x̂) = E[log(D(x̂))] + E[log(1−D(x))]. (5)

2.3. Training Details

In our experiments, our main model is trained on the
FFHQ [7] dataset with a single Nvidia RTX 3090 GPU. We
adopt the Adam [9] optimizer to optimize the 1×1 convolu-
tion layers in the encoder, the SAMM, and the discrimina-
tor. We set the learning rate to 2×1.0−5 for all modules, the
batch size to 2, and train our model for 40,000 iterations.
Progressive training. As we train multiple SAMM at dif-
ferent resolutions and the generator generates features pro-
gressively. We adopt a progressive training strategy for
SAMM, i.e., we enable the SAMM of {2, 3, 4} layer
(Tab. 2) at {2,000, 6,000, 10,000} iteration, respectively.

3. Experiments
3.1. Mask Regularization Loss

To examine the effectiveness of our mask regularization
loss Lmask, we train models with different ϕarea. In Fig. 5,
we visualize the inversion results and their corresponding
masks. The experiment shows that with decreasing ϕarea,
the prediction of the Out-Of-Domain (OOD) area becomes
more conservative. On the other hand, when ϕarea goes
too large, the eyes and mouth area on the face are also de-
tected as the OOD area, which is not ideal for downstream
tasks such as attribute manipulation. In this paper, we set
ϕarea = 0.3 for 322, 642 masks and ϕarea = 0.25 for
1282, 2562 masks to balance the editability and the fidelity
of our inversion framework.

3.2. Ghosting Artifact

In our main paper, we demonstrate that our spatial align-
ment on the generated features mitigates the geometrical
misalignment between the input image and the generated re-
sult at the blending stage. Consequently, our model trained
with spatial alignment predicts more accurate invertibility
masks and produces artifact-free blending results. In this
section, we further investigate the influence of spatial align-
ment at different resolutions. As is shown in Fig. 4, when
we progressively enable the spatial alignment in more layers
in our model, the ghosting artifacts are gradually removed
from the blending results. That spatial alignment is impor-
tant in our framework for high-fidelity GAN inversion for
face images.

w/o Spatial Alignment (SA) SA at layer {1} SA at layer {1, 2} SA at layer {1, 2, 3} SA at layer {1, 2, 3, 4} Input

Figure 4: Ablation study on the Spatial Alignment (SA) layers. We progressively enable the spatial alignment from the
low-resolution layer to the high-resolution layer in our model and blend the generated image with the input image with the
same invertibility masks. As shown in the results, as we enable more SA layers, the ghosting artifacts in the inversion result
decrease significantly.

Input −	𝜙!"#!

−
	𝜙
!"
#!

M
as
ks

Inversion

Figure 5: Ablation of Mask Regularization. With increas-
ing strength of the mask regularization (denoted as −ϕarea),
the area of predicted out-of-domain regions (i.e., white ar-
eas in the masks) goes smaller.

Figure 6: A screenshot of our user study questionnaire for
inversion quality ranking. The questionnaire of attribute
editing ranking follows the same structure.

4. User Study

In this paper, we conduct a user study to research the
user’s preferences on the GAN inversion and attribute ma-
nipulated results of our model and the baselines. In the user
study, we ask the participants to compare the input image
with the results of different methods for specific tasks such
as inversion, age editing, etc. We provide 5 sets of images
for inversion quality ranking and 6 sets of images for edit-
ing quality ranking. We collect 50 questionnaires (Fig. 6)
from the internet and summarize the user’s preferences as
shown in Tab. 2 in our main paper.

Input → Ours+ (a) e4e [15] (b) ReStyle [1] (c) FeatureStyle [19]

Figure 7: Our GAN inversion with different encoders.
We implement our framework with different pre-trained en-
coders for StyleGAN2 [8] generator. We show the predicted
out-of-domain area under the GAN inversion results.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓
FeatureStyle [19] 25.24 0.717 0.188 16.86
OursFeatureStyle, N=2 28.46 0.837 0.152 13.39

Table 3: Quantitative evaluation of GAN inversion quality
on the first 1,000 images in the CelebAHQ-Mask [11] test-
ing dataset.

5. GAN Invertibility
In our main paper, we solve the GAN invertibility from

the perspective of spatial decomposition (the decomposition
of In-Domain (ID) and OOD areas). In contrast, previous
works mainly focus on translating the images to the GAN
latent manifold to build the ID regions. We add more dis-
cussions for these works that are not mentioned in the main
paper. Zhu et al. [20] proposed the encoder for ID in-
version, where they trained a domain-guided encoder with
reconstruction loss and adversarial loss. Some following
works [13, 15] improved the ID inversion by training the
encoder progressively and applying adversarial supervision
on the predicted latent vectors. Our work is built on the ex-
isting image-to-latent encoders, and we expect the encoder
encodes the images into ID latent vectors as accurately as
possible. With the latent predicted, our framework can de-
tect the OOD areas in the input images, then skip the inver-
sion in such areas.
Our SAMM as a general plugin. In our main paper, we
introduce our SAMM module trained with the pre-trained
e4e [15], Restyle [1] encoders and the StyleGAN2 [8] gen-
erator. Conceptually, our framework could be used as a gen-
eral plug-in for image-to-latent encoders which share a sim-
ilar GAN inversion architecture.

For example, our framework could also be extended
with the pre-trained FeatureStyle [19] encoder. We demon-

Input (a) ReStyle [1] (b) OursReStyle

Figure 8: GAN inversion on AFHQ [3] wild animal
dataset. (a) Results with pre-trained ReStyle [1] encoder.
(b) Results of our framework. Overall, our framework helps
better reconstruct the mouths and eyes of the input images.

strate the inversion results and predicted OOD masks of our
framework using different encoders in Fig. 7. Our inversion
results consistently maintain high fidelity with different en-
coder architectures. We also evaluate the inversion quality
of our framework with the pre-trained FeatureStyle encoder
in Tab. 3. Our framework improves the inversion quality of
all pre-trained encoders significantly by decomposing the
OOD area and aligning the ID area to the ground truth.
The “OursFeatureStyle” model performs best among all the
other settings in the inversion quality, however, the Fea-
tureStyle [19] encoder works on an extended latent space,
which damages its editability. Thus, we choose “Ourse4e”
as our default model for most experiments. We will also
explore the possibility of adapting our framework to more
encoders in future work.
Domain generalization. While our primary focus is on out-
of-distribution (OOD) GAN inversion for human faces, we
also investigate the domain generalization capability of our
proposed framework on the Stanford Cars [10] dataset in
Sec. 4.2 of our main paper. Additionally, we extend our

work to the AFHQ [3] dataset for wild animal GAN inver-
sion, as a complementary evaluation. The results shown in
Fig. 8 demonstrate that our framework is also effective in
improving the inversion quality of the pre-trained encoder
(ReStyle [1] in this specific case) on wild animal images.
Nevertheless, our current framework doesn’t always work
well on tasks that introduce large-scale geometry changes
in the output (e.g., pose or shape editing). We aim to extend
our SAMM with pose awareness to support such editing in
our future study.

6. More Visual Results
In this section, we display more visual results of our

framework in face image inversion and attribute manipula-
tion results on both testing datasets and real-world images.
Face inversion. We visualize our face inversion results
against baseline methods in Fig. 9.
Face editing. We visualize more face editing results with
our method in Fig. 10. In Fig. 11, we apply our approach on
style transfer [5] and attribute manipulation on real-world
images.

e4e [15] SAM [12], iter=10 HyperStyle [2], iter=5 HFGIe4e [17] FeatureStyle [19] Ours Ground truth

Figure 9: Comparison of GAN inversion quality on CelebAMask-HQ [11] testing dataset. Please zoom in for details.

Input Inversion +Age +Beard -Smile +Thick eyebrows

Input Inversion -Age Hair Color +Smile +Narrow Eyes

Figure 10: Face manipulation results of our framework on CelebAMask-HQ [11] dataset, please zoom in for detail.

→ Pixar

+ Smile

→ Vintage Comic

Figure 11: Face manipulation results on real-world images. We detect faces in the image with RetinaFace [4] model. For
face style transfer (“Pixar” and “Vintage Comic”), we adopt the pre-trained generators from StyleGAN-NADA [5] without
retraining our SAMM layers. Please zoom in for details.

References
[1] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle:

A residual-based stylegan encoder via iterative refinement.
In ICCV, 2021. 1, 4, 5

[2] Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and
Amit H. Bermano. Hyperstyle: Stylegan inversion with hy-
pernetworks for real image editing. In CVPR, 2021. 6

[3] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains.
In CVPR, 2020. 4, 5

[4] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia,
and Stefanos Zafeiriou. Retinaface: Single-shot multi-level
face localisation in the wild. In CVPR, 2020. 8

[5] Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, and
Daniel Cohen-Or. Stylegan-nada: Clip-guided domain adap-
tation of image generators, 2021. 5, 8

[6] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
CVPR, 2016. 2

[7] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 1, 2

[8] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In CVPR, 2020. 1, 2, 4

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 2

[10] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
3dRR-13, 2013. 4

[11] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo.
Maskgan: Towards diverse and interactive facial image ma-
nipulation. In CVPR, 2020. 4, 6, 7

[12] Gaurav Parmar, Yijun Li, Jingwan Lu, Richard Zhang, Jun-
Yan Zhu, and Krishna Kumar Singh. Spatially-adaptive mul-
tilayer selection for gan inversion and editing. In CVPR,
2022. 6

[13] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding
in style: a stylegan encoder for image-to-image translation.
In CVPR, 2021. 2, 4

[14] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv,
2014. 2

[15] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and
Daniel Cohen-Or. Designing an encoder for stylegan image
manipulation. ACM TOG, 2021. 1, 4, 6

[16] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv, 2016. 2

[17] Tengfei Wang, Yong Zhang, Yanbo Fan, Jue Wang, and
Qifeng Chen. High-fidelity gan inversion for image attribute
editing. In CVPR, 2021. 6

[18] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
ECCVW, 2018. 2

[19] Xu Yao, Alasdair Newson, Yann Gousseau, and Pierre Hel-
lier. A style-based gan encoder for high fidelity reconstruc-
tion of images and videos. In ECCV, 2022. 4, 6

[20] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-
domain gan inversion for real image editing. In ECCV, pages
592–608. Springer, 2020. 4

