
A. Appendix
A.1. Additional Details
A.1.1 Non-Uniform Sparsity Loss

For each token, we determine whether or not it lies within a ground-truth bounding box. If the i-th token falls inside a
bounding box, the corresponding heatmap’s value is defined as

mi = exp

✓
� (xi � lx)2 + (yi � ly)2

2�2

◆
, (18)

where xi and yi are the xy-coordindates of the token, lx and ly are the xy-coordinates of the box’s center, and � is a hyper-
parameter that controls the smoothness of the heatmap. For tokens that do not lie within a bounding box, the heatmap’s value
is set to zero. We create the heatmap for each object class, and we take the maximize over all heatmaps to obtain the final
class-agnostic heatmap used by our non-uniform sparsity loss. The non-uniform sparsity loss is similar to focal loss [95], and
it is defined as follows:

Ls = �
LX

l=1

X

i2K

1

|K| [(1� sl,i)
↵ log(sl,i)Imi�1�✏ + (1�mi)

�
s
↵
i log(1� sl,i)Imi<1�✏] , (19)

where K = {i : k0:l�1,i = 1} is the set of tokens that have not been halted before the l-th layer, sl,i is the score for the i-th
token at the l-th layer, ↵ = 2 and � = 4 are hyper-parameters, and ✏ = 10�4 is used to improve numerical stability.

A.1.2 Analyzing the Pseudo-Gradient

In Section 5, we claim the following:

�i ⇡
@L(q1, q2)

@si
+O(u), (20)

where
�i := L(q̃1, q̃2)� L(q1, q2) (21)

is the difference in the detection loss when the i-th token is halted instead of being forwarded in a single layer network. In
other words, we claim that the (pseudo)-gradient of L(q̃1, q̃2) with respect to si provided by our proposed EDF and the STE
is a reasonable proxy of �i.

To prove this claim, we begin by computing

@L(q1, q2)
@si

=

⌧
@L(q1, q2)

@q1
,
@q1

@si

�
+

⌧
@L(q1, q2)

@q2
,
@q2

@si

�
. (22)

Recall that q1 = (1 � k) � f and q2 = k � �2(WSA(�1(f), s � k), f). Using the definition of the STE,

@q1

@si
= �@(k � f)

@si
= �1i � f (23)

and

@q2

@si
= k � @�2(WSA(�1(f), s � k), f)

@si
+

@k

@si
� �2(WSA(�1(f), s � k), f) (24)

= k � @�2(WSA(�1(f), s � k), f)
@si

+ 1i � �2(WSA(�1(f), s � k), f). (25)

Next, let us compute �i. Using Taylor series approximation,

�i ⇡
⌧
@L(q1, q2)

@q1
, q̃1 � q1

�
+

⌧
@L(q1, q2)

@q2
, q̃2 � q2

�
. (26)

Recall that q̃1 = (1 � k � 1i) � f and q̃2 = (k + 1i) � �2(WSA(�1(f), s � (k + 1i)), f); therefore,

q̃1 � q1 = �1i � f (27)

and

q̃2 � q2 = (k + 1i) � �2(WSA(�1(f), s � (k + 1i)), f)� k � �2(WSA(�1(f), s � k), f) (28)
= k � �2(WSA(�1(f), s � (k + 1i)), f)� k � �2(WSA(�1(f), s � k), f) (29)
+ 1i � �2(WSA(�1(f), s � (k + 1i)), f). (30)

Again, using Taylor series approximation,

k � �2(WSA(�1(f), s � (k + 1i)), f)� k � �2(WSA(�1(f), s � k), f) ⇡ k � @�2(WSA(�1(f), s � k), f)
@si

(31)

and

1i � �2(WSA(�1(f), s � (k + 1i)), f) ⇡ 1i � �2(WSA(�1(f), s � k), f) + 1i �
@�2(WSA(�1(f), s � k), f)

@si
(32)

As a result,

q̃2 � q2 ⇡ k � @�2(WSA(�1(f), s � k), f)
@si

+ 1i � �2(WSA(�1(f), s � k), f) + 1i �
@�2(WSA(�1(f), s � k), f)

@si
. (33)

Comparing Eq. (23) to Eq. (27) and Eq. (25) to Eq. (33), we see that

�i �
@L(q1, q2)

@si
⇡

⌧
@L(q1, q2)

@q2
, 1i �

@�2(WSA(�1(f), s � k), f)
@si

�
(34)

=
@L(q1, q2)

@q2,i

@�2(WSA(�1(f), s � k), f)i
@si

(35)

=
@L(q1, q2)

@q2,i

@�2(WSA(�1(f), s � k), f)i
@WSA(�1(f), s � k)i

@WSA(�1(f), s � k)i
@(s � k)i

si, (36)

where
@�2(WSA(�1(f), s � k), f)i

@si
=

@�2(WSA(�1(f), s � k), f)i
@WSA(�1(f), s � k)i

@WSA(�1(f), s � k)i
@(s � k)i

@(s � k)i
@si

(37)

and
@(s � k)i

@si
=

@siki

@si
= ki + si = si (38)

using the definition of the STE and the fact that ki = 0. In general, the derivative of L and �2 is bounded since the parameter
space of the network is bounded (due to the weight decay) and the operators inside the network are Lipschitz continuous.
However, @WSA(�1(f), s�k)i/@(s�k)i can be singular when all the element of s�k are zero. We argue that in our analysis,
we can still treat this term as bounded for two reasons. Firstly, in practice, we add an ✏ to the denominator of the WSA to
prevent numeric instability, which makes the gradient bounded even if all the elements of s�k are zero. Secondly, we employ
gradient clipping to enforce a bound on the gradient. All of this combine, we have

�i ⇡
@L(q1, q2)

@si
+O(u). (39)

That is, the approximation error of the pseudo-gradient is proportional to si thanks to the usage of weighted attention.
Furthermore, since ki = 0, we have |si| < u where the threshold u is in general a very small value. This demonstrates that
our pseudo-gradient provides useful information for updating the halting module.

Speed Up/Sparsity Method Vehicle Pedestrian Cyclist
AP/APH L1 AP/APH L2 AP/APH L1 AP/APH L2 AP/APH L1 AP/APH L2

1.00/0.00 Original 76.2/75.7 67.7/67.2 79.9/71.4 72.7/64.8 67.7/66.3 65.2/63.8
1.07/0.00 Width scale 75.4/74.9 66.9/66.5 79.5/70.7 72.2/64.0 65.6/64.1 63.0/61.6
1.16/0.00 Num head scale 75.5/75.0 67.0/66.6 79.4/70.8 72.0/64.1 65.5/63.9 63.0/61.5
1.28/0.48 AViTadapted [87] 71.9/71.3 63.4/62.9 76.8/67.9 69.1/60.9 63.1/61.6 60.7/59.3
1.21/0.75 Ours 76.1/75.6 67.8/67.3 79.4/70.7 72.1/64.0 67.0/65.6 64.4/63.1
1.13/0.00 Width scale 73.8/73.3 65.3/64.8 78.2/69.0 70.6/62.1 61.7/60.2 59.3/57.9
1.45/0.00 Num head scale 73.8/73.3 65.4/64.9 78.2/68.8 70.7/62.1 62.0/60.3 59.6/58.0
1.39/0.57 AViTadapted [87] 70.3/69.7 61.9/61.4 76.2/67.2 68.4/60.1 60.8/59.3 58.5/57.0
1.37/0.82 Ours 76.1/75.6 67.7/67.2 79.9/71.5 72.6/64.7 67.4/66.1 64.8/63.6
1.18/0.00 Width scale 70.4/69.8 62.0/61.5 74.5/64.3 66.7/57.4 54.9/52.9 52.8/50.8
1.45/0.00 Num head scale 73.8/73.3 65.4/64.9 78.2/68.8 70.7/62.1 62.0/60.3 59.6/58.0
1.55/0.72 AViTadapted [87] 70.1/69.6 61.7/61.3 76.3/67.5 68.5/60.4 61.6/60.1 59.2/57.8
1.52/0.89 Ours 75.4/74.9 67.0/66.5 79.7/71.5 72.4/64.7 67.1/65.7 64.5/63.2

Table 5. Efficiency and accuracy trade-off. We report the relative backbone speed-up and the average sparsity across all the attention layers.

A.2. Additional Experiment Details and Results
A.2.1 Setup and Implementation Details

We use a mixed strategy to decide the halting threshold. We specific an upper and lower token score quantile (denoted as
↵u and ↵l) and enforce that the sparsity of each layer varies within [↵l,↵u]. To achieve this, the final threshold is given by
clamping the pre-specific threshold u within [Q(↵l), Q(↵u)] where Q(↵l) and Q(↵u) denote the score corresponding to the
↵l and ↵u quantile, respectively. We enforce such a constrain because we observe that the distribution of scores can vary
considerably for different scenes during the early stages of training and selecting the threshold in this way helps to stabilize
training. In Table 1, the sparsity is bounded between 80% and 90% for the first halting module, 90% and 99% for the second
halting module, and the default value of u is 0.01. The following technique can be used to identify u for a new dataset/model:
train a model for a short period, then select u such that it is higher than the score of most foreground voxels and less than the
score of most background voxels.

A.2.2 Efficiency and Accuracy Trade-off

For the baselines, we vary the latent dimension of the attention mechanism by {16, 12, 8, 4}, and we vary the number of
attention head by {8, 6, 5, 4}. We adapt AViT from [87], but we apply our token recycling to improve the performance. Also,
we adjust the number of input token features for the halting module from 1 to 32 as this improves performance while having
a negligible impact on latency. Table 5 summarizes the results. Overall, we observe that our method significantly improves
over other model scaling approaches as well as AViT.

A.2.3 The SST++
halt Architecture

For our SST++
halt architecture, we use a U-Net [61] and a single layer MLP as the first and second halting module. We find

that the latent features of the U-Net contain useful semantic information. To reuse those features, we fuse the token features
with the U-Net’s features by applying a linear transformation and sums the features. Furthermore, we add the U-Net’s feature
map to the BEV feature map. To leverage the latency savings provided by halting tokens, SST++

halt uses an extra convolutional
block in the detection head for a total of two convolutional blocks. The first convolutional block contains four convolutional
layers. The second convolutional block contains four convolutional layer where the first layer has a stride of 2. All the layers
use a kernel size of 3. Afterwards, we use the Feature Pyramid Network [34] employed by SECOND [81] to fuse the two
scales of the BEV feature map and make predictions.

