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In this appendix, we first briefly describe the source code
files. (Appendix A). Then we provide the procedure for gen-
erating the pseudo-video dataset and the information about
the dataset (Appendix B). In addition, we give more results
on VIS (Appendix C). Next, we extend CTVIS to video
panoptic segmentation (Appendix D). Finally, we discuss
the limitation and future work.

A. Code

We include the source code in the zip file. Fur-
ther implementation details of consistent training can
be found in ct_plugin.py, and the training and in-
ference procedures are included in ctvis_model.py.
get_pseudo_data.py is used to generate the pseudo-
video datasets. Furthermore, all codes, environmental guide-
lines, model weights and training logs will be made publicly
available.

B. Pseudo-Video Datasets

o YTVIS21* OVIS*
Attributions Train Test Train Test
Images / Videos | 88,462 421 86,080 140
Instances 434,159 986 405,866 881
Masks 434,159 29,297 | 405,866 73,027

Table 1. The attributions of YTVIS21* and OVIS™.

As mentioned in Section 4.3, we adopt the overlapping
categories of COCO and VIS datasets for training. Specifi-
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cally, we use COCO to generate pseudo-videos as the train-
ing set and select a portion of the target VIS dataset as the
validation set. Since the validation set of the VIS dataset
used for evaluation is not publicly available, we split the
original training set into two non-overlapping parts, respec-
tively used as training and validation sets. In order to facil-
itate reproducibility, we provide a detailed description of
the dataset in this appendix. For YTVIS22*, we select per-
son, motorbike, car, airplane, train, truck, boat, bird, cat,
dog, horse, cow, elephant, bear, zebra, giraffe, flying disc,
snowboard, skateboard, surfboard and tennis racket as the
categories. For OVIS*, we select person, bicycle, vehicle,
motorcycle, airplane, boat, cat, dog, horse, sheep, cow, ele-
phant, bear, zebra and giraffe as the categories. Specifically,
we select only those images and videos from the COCO and
target VIS datasets that contain instances of the categories
of interest. We select 421 and 140 videos from the train-
ing set of YTVIS21 and OVIS as the validation of YTVIS*
and OVIS*, respectively. Table 1 shows the attributes of the
YTVIS21* and OVIS*. The generation procedure is included
in get_pseudo_data.py.

C. Additional Results on VIS
C.1. Datasets information

YTVIS19 [15] covers 40 object classes and contains
2,238/302 videos for training/validation. YTVIS21 [15] re-
tains the number of categories of YTVIS19 while expand-
ing the datasets to 2,985/421 videos for training/validation
and improving the instance annotation quality. OVIS [10]
has 25 object classes and contains 607/140 videos for train-
ing/validation. While the number of videos is less, each
OVIS video includes more frames (69.4 frames on average)
than YTVIS19 (27.6 frames) and YTVIS21 (30.2 frames).
Moreover, OVIS samples typically involve more instances
and severe occlusion and thus are more challenging.



C.2. Without COCO Joint Training

We provide results trained solely on video data (for a fair
comparison with previous methods [2, 16]). As shown in
Table 3, CTVIS (ResNet-50 as the backbone) trained with-
out COCO data achieves 49.3 on AP on YTVIS21, close to
50.1 with COCO joint training. Meanwhile, CTVIS signif-
icantly outperforms previous methods under the same w/o
CIJT setting.

Methods | Throughput FPS | APYIVIS1O  ApYIVIS2L  ApOVIS
IDOL 33 143 | 495 439 302
CTVIS 13 139 | 551 50.1 355

Table 2. Comparison with IDOL in terms of FPS and throughput.
We use the ResNet-50 as the backbone and test on RTX-3090.

Methods \ cJT \ AP
CrossVIS [16] X 34.2
Mask2Former-VIS [2] X 40.6
CTVIS X 1493
CTVIS v 50.1

Table 3. Performance on YTVIS21 without using COCO joint
training (CJT). We use the ResNet-50 as the backbone.

C.3. FPS and Throughtout

As shown in Table 2, vanilla IDOL is faster than CTVIS.
For training (batch size is 1), the throughput of IDOL is
3.3 samples per second, while the throughput of CTVIS is
1.3. In terms of inference (using ResNet-50 as the backbone,
tested on 1 piece of GeForce RTX 3090, and the batch size
is 1), CTVIS runs at 13.9 frames per second, which is neg-
ligibly slower than IDOL’s 14.3. However, CTVIS notably
outperforms IDOL by 5% in terms of AP.

C.4. Results on YTVIS22

As shown in Table 4, we evaluate our CTVIS on
YTVIS22 [15], which shares the same training set with
YTVIS21 and extends with 71 long videos for validation.
Because most methods do not report the results on YTVIS22,
we use the official source codes and model weights trained
on YTVIS21 provided by the authors to measure the average
precision in this experiment. We observe that the perfor-
mance improvement for long videos is significant as the
CTVIS with ResNet-50 surpasses the previous SOTA of-
fline method (VITA [5]) and online method (IDOL [14]) by
7.1 and 3.1 on AP’ respectively. With the stronger back-
bone Swin-L, CTVIS outperforms the IDOL by 2.4 on APZ,
which suggests that CTVIS generalizes well to long compli-
cated videos.

Methods | AP APY APE
— | Mask2Former-VIS [2] | 354 40.7 30.2
py MinVIS [6] 33 443 216
g VITA [5] 389 457 32
Z IDOL [14] 41.8 473 363
g CTVIS (Ours) 449 503 394
_ Mask2Former-VIS [2] | 434 526 34.2
©, MinVIS [6] 443 555 33
j VITA [5] 493 577 41
g IDOL [14] 523 607 44
« CTVIS (Ours) 53.8 612 464

Table 4. Compare CTVIS with SOTA methods [2, 5, 6, 14] on

YTVIS22 [15]. AP® and AP? denote the performance evaluated
on short videos and long videos, respectively. AP is obtained by
averaging AP® and AP” over classes. The best and second best are
highlighted by bold and underlined numbers, respectively.

C.5. Instance Embedding Visualization

We visualize the learned instance embeddings by t-SNE
[12] in Figure 1. Each plot is for a video and the plot of the
same color represents the identical video. The embeddings
of the same instance (across different frames) is denoted
by one particular color. As there are no annotations in the
validation set, we select videos from the training set. For
the VIS model [14] without consistent training (first row
of Figure 1), instance embeddings are scattered. With con-
sistent training, CTVIS learns more discriminative instance
embeddings, which allows a robust tracking of instances in
videos.

C.6. More Qualititative VIS Results

Figure 2 gives additional results of CTVIS with Swin-L
on the validation and testing sets of OVIS. CTVIS is capable
of handling complex scenes that involve object occlusion,
deformation, small-scale objects, and is able to obtain accu-
rate segmentation results. We also provide a visualization
video, please refer to demo_dance .mp4 for details.

D. Extend to Video Panoptic Segmentation

Video panoptic segmentation (VPS) [7, 9] requires seg-
menting and tracking things across video and segmenting
stuff (i.e. sky, grass) in each frame. In this appendix, we
simply apply our proposed CTVIS to VPS.

D.1. Results on VIPSeg

We select the VIPSeg as the dataset, which is a chal-
lenging dataset with 2,806/343 in-the-wild videos for train-
ing/validation. It contains 124 semantic classes (58 thing and
66 stuff classes). Following prior works [1, 9], we use the
VPQ, VPQ™", VPQS* and STQ as the evaluated metrics. We
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Figure 1. Visualization of instance embeddings without (w./0.) or with (w.) consistent training. Each plot is for a video, and plots of the same
color represents an identical video. Within each plot, embeddings of the same instance (in different frames) take one particular color. Clearly,
CTVIS enables the learning of more discriminative instance embeddings.

Methods | Backbone | VPQ VPQ™" VPQS' STQ
VPSNet [7] ResNet-50 | 14 14 142 208
VPSNet-SiamTrack [13] | ResNet-50 | 17.2  17.3 173 21.1
VIP-Deeplab [11] ResNet-50 | 16 12.3 182 22
Clip-PanoFCN [9] ResNet-50 | 22.9 25 20.8 31.5
TarVIS * [1] ResNet-50 | 33.5  39.2 285  43.1
CTVIS (Ours) ResNet-50 | 37.5  36.8 382 447
TarVIS * [1] Swin-L 48 58.2 39 52.9
CTVIS (Ours) Swin-L | 49.5 489 499  56.4

Table 5. Compare CTVIS with SOTA VPS methods on VIPseg. * indicates that TarVIS introduces other video segmentation datasets to train

a unified model.

evaluate CTVIS with ResNet-50 and Swin-L as backbones,
respectively.

As shown in Table 5, CTVIS is very competitive in com-
parison with SOTA models [1, 7,9, 11, 13] proposed for
VIPSeg. Please note that TarVIS [1] also takes Mask2Former
[3] as the base segmentation model and trains on multiple
segmentation datasets [9, 10, | 5]. In comparison, CTVIS is

simply trained on the VIPSeg dataset, which outperforms
TarVIS in all metrics except for VPQ”™". Specifically, with
the Swin-L backbone, CTVIS outperforms TarVIS by 3.5 in
STQ, which is the most important metric.



D.2. Visualization Results

We visualize the qualitative results of CTVIS with
ResNet-50 on the testing set of VIPSeg [9] in Figure 3,
where CTVIS offers superior segmentation results even for
complex scenes.

E. Limitation and Future Work

CTVIS has its own limitations. For example, it introduces
extra computation in order to maintain the memory bank
during training. Moreover, as CTVIS is a training strategy, its
performance heavily depends on the performance of the base
frame-wise segmentor (e.g. Mask2Former). Hence, CTVIS
is liable to go wrong if the base segmentor cannot provide
decent segmentation results. We suggest introducing some
temporal modules in the future to enhance the consistency of
the segmentation, as well as incorporating motion constraints
to improve tracking.
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Figure 2. Additional qualitative results of CTVIS with Swin-L [&] on the validation and testing set of OVIS [10]. Each row represents a
video. The same color denotes the same instance. Best viewed in color.
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Figure 3. Qualitative results of CTVIS with Swin-L [&] on the testing set of VIPSeg [9]. Each row represents a video. The same color
represents the same instance. Best viewed in colo:




