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1. Implementation Details
1.1. Data Preparation

We use the Computational Geometry Algorithms Library
(CGAL) [2] to construct the Delaunay triangulation for in-
put points. The point indices and adjacencies of each tetra-
hedron and triangle can be obtained through the Delaunay
triangulation. To generate ground truth labels, we randomly
sample Nref reference locations inside each tetrahedron
and compute the inside/outside labels with respect to the
ground truth surface. For an infinite tetrahedron with an
infinite vertex, we are unable to determine its internal ref-
erence locations. As a solution, we replace it with a new
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Figure 1: Visual comparison of our method with Poisson.

finite tetrahedron depicted in Figure 2. Afterwards, we sam-
ple reference locations inside the new finite tetrahedron and
use them as the reference locations for the corresponding
infinite tetrahedron. This strategy is particularly useful for
open scenes. As for closed models, we can simply assign
the labels of all infinite tetrahedrons as outside.

1.2. Special Processing in Scaling Strategy

For an infinite tetrahedron in the Delaunay triangulation,
we put it in the same leaf as its neighbor finite tetrahedron
in our octree-based partitioning. For tetrahedrons at the
leaf boundaries, we adopt a padding strategy to treat a few
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Figure 2: 2D example of constructing a new tetrahedron
instead of an infinite one. bco is an infinite tetrahedron with
an infinite vertex o. It is adjacent to a finite tetrahedron
abc and shares a triangular facet bc on the boundary of the
convex hull. We find the geometric center e of bc and extend
line segment ae to a new point d, so that ed is K times
length of ae. Then we connect d to the triangular facet bc to
form a new tetrahedron bcd. Although the new tetrahedron
is contained within the original infinite tetrahedron bco, it is
still a useful alternative.

missing neighbor tetrahedrons as infinite tetrahedrons. It is
worth noting that the number of tetrahedrons at the bound-
aries is very small relative to all tetrahedrons inside the leaf.
With the multiple Local Graph Iteration layers, these tetra-
hedrons are still able to exchange information with other
neighbors inside the leaf.

1.3. Surface Extraction

We index each triangle in the Delaunay triangulation,
and extract it as part of the final surface if its two neigh-
boring tetrahedrons have labels from different classes.

2. Experiments
2.1. Metrics

In this section, we provide a detailed description of the
metrics used in our experiments. On ShapeNet, we em-
ploy six metrics to conduct a comprehensive assessment,
including Normal Consistency (NC), Chamfer-L1 Distance
(C-L1), F-Score (F), IoU, Percentage of Watertight Edges
(WE), and Average Number of Triangles (N.T). The evalu-
ation procedure provided by ConvONet [18] is utilized for
the first four metrics.

• NC. It is defined as the average absolute dot product of
the normals in one mesh and the corresponding nearest
neighbors in the other mesh.

• C-L1 Distance. It is calculated as the mean of an ac-
curacy metric and a completeness metric. Points are
randomly sampled on both the output mesh and the

ground truth mesh. The accuracy metric is defined
as the distance to the nearest neighbor on the ground
truth mesh for points on the output mesh, while the
completeness metric is defined as the distance to the
nearest neighbor on the output mesh for points on the
ground truth mesh.

• F-Score. It calculates the harmonic mean between pre-
cision and recall, similar to Chamfer-L1 Distance, but
the difference is that F-Score evaluates the percentage
of points that fall within a certain distance threshold.

• IoU. It is defined as the ratio of the volume of the inter-
section between the output mesh and the ground truth
mesh to the volume of their union. It requires both the
output mesh and the ground truth mesh to be water-
tight.

• Percentage of Watertight Edges. We take the percent-
age of watertight edges in the output mesh as the value
of WE.

On the FAMOUSTHINGI dataset, we follow DSE [19]
to use Chamfer Distance (CD), Normal Reconstruction Er-
ror (NR), and WE as evaluation metrics. Additionally, for
Edge Chamfer Distance (ECD) and Edge F-Score (EFS),
we use the settings of NMC[5].

• CD. It finds the nearest point in the other point cloud,
and averages the square of distances up.

• NR. It measures the angle difference between the
ground truth normal and the normal obtained from our
reconstructed mesh at each vertex.

• ECD. It measures Chamfer Distance for points on
edges. We first sample points S = {si} uniformly
on the mesh, then use the same strategy as NMC [5] to
retain points on the edges. We define ”sharpness” as:
σ (si) = minj∈Nε(si) |ni · nj |, where Nε(s) extracts
the indices of the samples in S within distance ε from
s, and n is the surface normal of a sample. We set
s = 0.004, and generate the edge sampling of the sur-
face by retaining points for which σ (si) < 0.2. Given
two shapes, the ECD between them is the Chamfer
Distance between the corresponding edge samplings.

• EFS. We generate the edge sampling in the way of
ECD, and compute the F-Score between the corre-
sponding edge samplings of the given two shapes as
EFS. The threshold value of F-Score is set to 0.5%.

On the DTU dataset, we follow SSRNet [16] to use CD
and the official evaluation method [9], which evaluates DTU
Accuracy and DTU Completeness.
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Figure 3: Comparison of reconstruction results on noisy data.

Noise Method C-L1 ↓ F(0.3%) ↑ NC ↑ WE ↑ IoU ↑

0.5%

Alpha shapes [6] 0.063 0.451 0.899 1.0 0.557
Ball pivoting [1] 0.040 0.585 0.928 0.802 -
ConvONet [18] 0.066 0.367 0.915 1.0 0.818
PointTriNet [21] 0.029 0.642 0.940 0.786 -
IER Meshing [12] 0.065 0.385 0.898 0.615 -
SAP [17] 0.033 0.629 0.947 1.0 0.918
SSRNet+ [24] 0.035 0.488 0.945 0.990 -
DSE [19] 0.028 0.659 0.941 0.947 -
DeepDT [13] 0.031 0.700 0.947 1.0 0.947
Poisson [10] 0.025 0.724 0.959 1.0 0.953
Ours 0.025 0.723 0.957 1.0 0.954

1%

Alpha shapes [6] 0.100 0.241 0.890 1.0 0.552
Ball pivoting [1] 0.054 0.447 0.853 0.725 -
ConvONet [18] 0.094 0.287 0.869 1.0 0.730
PointTriNet [21] 0.039 0.501 0.860 0.729 -
IER Meshing [12] 0.094 0.199 0.883 0.489 -
SAP [17] 0.036 0.565 0.941 1.0 0.902
SSRNet+ [24] 0.050 0.272 0.928 0.989 -
DSE [19] 0.036 0.530 0.879 0.859 -
DeepDT [13] 0.033 0.639 0.934 1.0 0.926
Poisson [10] 0.029 0.639 0.949 1.0 0.931
Ours 0.029 0.651 0.942 1.0 0.931

Table 1: Quantitative comparison for test data with noise on
ShapeNet. ’-’ means that the data is not evaluated due to the
limitation of watertightness.

• DTU Accuracy and DTU Completeness. Both of these
metrics are used to measure the distance between two
point clouds, similar to the Chamfer-L1 Distance.

2.2. Noise Resistance

Explicit methods are more sensitive to noisy data com-
pared to implicit methods, since they derive the vertices of
meshes from the input noisy points. Therefore, noisy data
is a great challenge for explicit methods. To evaluate the
noise resistance of various explicit methods, we apply a per-
turbation to ShapeNet data with 10K points according to a

Method C-L1 ↓ F(1%) ↑ F(0.3%) ↑ NC ↑ WE ↑ IoU ↑ N.T(k)

Alpha shapes [6] 0.057 0.839 0.598 0.879 0.989 - 15.43
Ball pivoting [1] 0.035 0.910 0.681 0.943 0.803 - 14.16
PointTriNet [21] 0.0227 0.994 0.763 0.960 0.852 - 18.85
IER Meshing [12] 0.031 0.962 0.706 0.948 0.791 - 16.95
NDC [4] 0.048 0.945 0.683 0.953 0.991 - 65.11
SSRNet+ [24] 0.031 0.981 0.569 0.956 0.984 - 59.37
DSE [19] 0.0226 0.9938 0.768 0.956 0.974 - 19.87
DeepDT [13] 0.026 0.978 0.751 0.948 0.986 - 19.25
Poisson [10] 0.024 0.9934 0.762 0.964 1.0 0.965 39.50
Ours 0.0211 0.9974 0.795 0.969 1.0 0.981 20.13

Table 2: Quantitative comparison for non-uniform data on
ShapeNet. ’-’ means that the data is not evaluated due to the
limitation of watertight meshes.

Gaussian function with 1%-bounding-box deviation as well
as 0.5%-bounding-box deviation. We also apply the same
perturbation to the normals of the points. To provide a com-
prehensive comparison between explicit methods and im-
plicit methods, we add Poisson, SSRNet+, SAP, and Con-
vONet as additional benchmarks. Since explicit methods
take noise points as mesh vertices, inevitably producing un-
even surfaces, we add a slight Laplacian smoothing [23] to
all results in this experiment. It is worth noting that the
smoothing does not change the watertightness and integrity
of the meshes, but only improves some visual effects. Even
for Poisson, it still works well.

Table 1 presents the quantitative evaluation results, re-
vealing that the methods for generating connected trian-
gles experience significant performance degradation when
confronted with highly noisy data, particularly in terms
of Chamfer-L1 Distance and the Percentage of Watertight
Edges. Although maintaining both precision and quality of
meshes poses a significant challenge for explicit methods,
our DMNet effectively reduces the impact of noise while
maintaining high performance on distance metrics and IoU.
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Figure 4: Visual results for data with density variation.

In the comparison, our method exhibits similar performance
to Poisson, which outperforms other methods significantly,
including state-of-the-art implicit methods. This suggests
that methods learning the labeling of tetrahedrons from De-
launay triangulation have the potential to resist noise to a
certain extent. Figure 3 presents the qualitative results for
noisy data with 1%-bounding-box deviation. It can be seen
that our method offers superior detail preservation.

2.3. Random Sampling

An outstanding explicit method should not only be effec-
tive for uniformly sampled data (the distances between the
nearest points are approximate), but also for non-uniformly
sampled data. Therefore, we randomly sample 10K points
for each shape in ShapeNet to further test the adaptability of
different explicit methods to point density variations. Ad-
ditionally, we add SSRNet+, NDC, and Poisson as bench-
marks to compare the performance of explicit and implicit
methods. For all learning-based methods, we apply their
well-trained models under uniformly sampled data. How-
ever, for DeepDT, we retrain the model due to its poor
adaptability to data with varying distributions. Based on Ta-
ble 2, it can be observed that all methods experience varying
degrees of performance degradation when dealing with non-
uniformly sampled data. While our DMNet and implicit
methods exhibit smaller fluctuations compared to other ex-
plicit methods. Moreover, our method still maintains a sig-
nificant advantage in terms of evaluation results, indicating
the robust adaptability of our method to point density vari-
ations. Furthermore, to demonstrate this capability of our
method more clearly, an example of a significant variation
in the density of different parts of a point cloud is shown
in Figure 4. In contrast, our method maintains a better in-
tegrity.

2.4. Comparison with Optimization-based Methods

We compare our method with some state-of-the-art
optimization-based methods, such as IGR [8], Neural Pull
[14], and CAP-UDF [25], to further demonstrate our out-
standing detail reconstruction capability, especially for thin
structures. Different from the learning-based approaches,
these optimization-based methods sacrifice time for accu-
racy. We select ten data with complex thin structures from
ShapeNet for comparison and use the default settings of

Method C-L1 ↓ F(0.3%) ↑ NC ↑ WE ↑ IoU ↑ N.T(k)

IGR [8] 0.037 0.753 0.926 1.0 0.911 186.40
Neural Pull [14] 0.079 0.551 0.889 1.0 0.749 1358.46
CAP-UDF [25] 0.026 0.694 0.912 0.938 - 1623.38
Ours 0.022 0.784 0.930 1.0 0.954 20.24

Table 3: Quantitative comparison with optimization-based
methods on ShapeNet. Each input point cloud has 10K
points. ’-’ means that the data is not evaluated due to the
limitation of watertight meshes.

Method Chamfer-L1 ↓ Chamfer-L2 ↓ F1 (%) ↑ 3D IoU (%) ↑
DefTet 0.97 0.33 96.81 87.69
DMTet 0.77 0.26 98.76 91.05
Ours 0.27 0.16 99.38 93.82

Table 4: Quantitative comparison with DMTet and DefTet.

these optimization-based methods. Each model is opti-
mized tens of thousands of times, and the resolution is set
to 512. For IGR, we use its version with normal super-
vision. Table 3 presents the quantitative comparison and
our method achieves the best results on each metric. Sur-
prisingly, our method produces a significantly lower num-
ber of triangles compared to other optimization-based meth-
ods, achieving a balance between accuracy and resolution.
The visual results are presented in Figure 5. For these
complex thin structures, our method still reconstructs more
complete models and smooth lines without any smoothing
post-processing. It is noteworthy that our method produces
significantly fewer triangles, only one-ninth or even one-
eightieth of the number produced by other methods. The
fine-grained details are well preserved by a small number
of triangles, further demonstrating the excellent reconstruc-
tion capability of our method.

2.5. Comparison with Methods Learning Tetrahe-
dral Deformation

We further compare some methods combining explicit
and implicit representations, such as DMTet [22] and
DefTet [7]. The two methods deform the vertices of regu-
lar tetrahedrons based on the learned implicit field functions
and generate an explicit mesh that aligns with the implicit
representation. In contrast, our approach constructs the ex-
plicit mesh directly from the input data. Considering that
the DMTet code is not released, we adopt the experimental
setup outlined in the DMTet paper to ensure a fair compar-
ison. We sample 5k points and add Gaussian noise with
a standard deviation of 0.5%. The comparison results are
shown in Table 4, where the results of DMTet and DefTet
are obtained from the DMTet paper. Our method exhibits
better reconstruction accuracy and completeness.
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Figure 5: Qualitative comparison with optimization-based methods. Our method exhibits better model integrity and fewer
artifacts than other methods.
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Figure 6: Visual comparison of different algorithms on the FAMOUSTHINGI dataset. Our method well preserves the sharp
features.

Explicit Method Time (s) Memory (MB) Implicit Method Time (s) Memory (MB) Optimization-based Time (s) Memory (MB)

Alpha shapes [6] 0.99 - Poisson [10] 4.56 - IGR [8] 12250 8853
Ball pivoting [1] 0.32 - ONet [15] 0.70 1897 Neural Pull [14] 480 1273
PointTriNet [21] 25.57 4446 ConvONet [18] 0.88 960 CAP-UDF [25] 690 1324
IER Meshing [12] 29.92 2510 SAP [17] 0.30 2245
DSE [19] 34.14 6962 NDC [4] 6.11 3875
DeepDT [13] 3.22 2867 SSRNet+ [24] 12.21 2957
Ours 3.64 2935

Table 5: Average running time and video memory occupation of different methods.
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Figure 7: Comparison of reconstruction results for sparse points. For one shape, we show two rows of results, where the
upper row is for 3K points and the lower row is for 1K points. Our method maintains good model integrity even as the point
cloud density is significantly reduced.



2.6. Running Time and Video Memory Usage

We evaluate the efficiency and video memory usage of
different competing methods on 10K points sampled on
ShapeNet, using 1 GeForce RTX 2080 Ti GPU in an In-
tel Xeon(R) CPU system. The average time consumption
and video memory occupation are reported in Table 5. To
simplify testing, we use the CPU to evaluate the speed of ge-
ometric methods such as Poisson, Ball Pivoting, and Alpha
Shapes. As for optimization-based methods, we only mea-
sure the average optimization time, excluding the time taken
to extract the surface. It can be seen that learning-based ex-
plicit methods generally have high time consumption, but
our method and DeepDT show strong competitiveness. This
highlights the benefits of using Delaunay triangulation to
balance resolution, memory usage, and time consumption.
The acceptable time consumption and memory usage of our
approach make it practical for daily reconstruction tasks.

2.7. More Visual Results

The visual results of different algorithms on the FA-
MOUSTHINGI dataset are presented in Figure 6. In con-
trast to the smooth edges produced by implicit methods and
the jagged edges produced by other explicit methods, our
method has an outstanding ability to preserve edge sharp-
ness. Compared with DeepDT, our method significantly
reduces the generation of artifacts. In addition, Figure 1
shows the visual comparison of our method with Poisson,
and Figure 7 presents visual results of various methods on
sparse points. Moreover, Figure 8 and Figure 9 present
more results of our method on ShapeNet with 10k points.

3. Use of Existing Assets

3.1. Datasets

ShapeNet Dataset [3] Following ONet [15] and ConvONet
[18], we use a subset consisting of 13 categories for exper-
iments. To obtain a watertight model for sampling, we use
the Poisson algorithm [10] to reconstruct the one hundred
thousand points provided by ConvONet.

FAMOUSTHINGI Dataset [19] This dataset comprises 91
shapes, primarily consisting of CAD models. Their shapes
differ from those in ShapeNet, and all meshes are water-
tight. Models in this dataset have a large number of sharp
edges. We use this dataset to perform generalization exper-
iments and test the ability to reconstruct sharp structures.

DTU Dataset [9] In contrast to the above datasets, DTU is
a real-world scanned dataset consisting of 124 open scenes
with millions of points. As such, it presents a unique chal-
lenge for reconstruction. We use this dataset to evaluate the
ability to reconstruct large-scale real-world data. Following

SSRNet+ [24], we use the Poisson surfaces with an octree
depth of 10 as the ground truth surfaces.

3.2. Baselines

In our benchmark, L-Method [11], Ball pivoting [1], and
Alpha shapes [6] are the classical explicit methods, and
Poisson [10] is a classical implicit method that is often re-
garded as an excellent competitor by various approaches. In
learning-based methods, ONet [15], ConvONet [18], SAP
[17], NDC [4], SSRNet [16], and SSRNet+ [24] are state-
of-the-art methods for learning implicit representation in
different manners. PointTriNet [21], IER Meshing [12],
DSE [19], and DeepDT [13] are state-of-the-art learning-
based explicit methods. Next, we describe in detail the spe-
cific parameter settings of the comparison methods in our
experiments. Unless otherwise specified, we use the default
settings.

• Ball pivoting [1] and Alpha shapes [6]. Following the
parameter settings of DSE [19], the radius of Ball piv-
oting is set to the bounding box diagonal divided by
the square root of the vertex count. For Alpha shapes,
the radius is set to 5% of the bounding box diagonal,
which is reported to have good results in [19].

• L-Method [11]. We complete the implementation of
this method using the program in COLMAP [20]. Due
to the need of visibility information, we only compare
it on DTU dataset.

• Poisson [10]. We set its maximum octree depth to 7
in our experiments on the ShapeNet dataset. We find
that even if set higher, it basically makes no difference
to the results. In the experiments on DTU, we follow
SSRNet+ [24] to set the maximum octree depth to 9
and trim the surfaces by the official Surface Trimmer
tool with a trimming value of 9.5.



Figure 8: Visual results of our method on ShapeNet.



Figure 9: Visual results of our method on ShapeNet.



References
[1] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier,
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