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1. Background

Since recent 3D-aware image generative models are
all based on neural implicit representations, especially
NeRF [10], here we briefly introduce the NeRF-based 3D
representation and more StyleSDF details for clarification.
NeRF-based 3D Representation. NeRF [10] proposed an
implicit 3D representation for novel view synthesis. Specif-
ically, NeRF defines a scene as {c, σ} = FΦ(x,v), where
x is the query point, v is the viewing direction from camera
origin to x, c is the emitted radiance (RGB value), σ is the
volume density. To query the RGB value C(r) of a point
on a ray r(t) = o+ tv shoot from the 3D coordinate origin
o, we have the volume rendering formulation,

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),v)dt, (1)

where T (t) = exp(−
∫ t

tn
σ(r(s))ds) is the accumulated

transmittance along the ray r from tn to t. tn and tf de-
note the near and far bounds.
Hybrid 3D Generation. In hybrid 3D generation [11,
1, 6], the intermediate feature map is calculated by re-
placing the color c with feature f , namely F(r) =∫ tf
tn

T (t)σ(r(t))f(r(t),v)dt. Then, a StyleGAN [7, 8]-
based decoder upsamples F into high-resolution images
with high-frequency details.
SDF and Radiance-based Geometry Representation.
The intermediate geometry representation of G0 diversi-
fies the characteristics of different 3D GANs. Specifi-
cally, StyleSDF [11] uses G0 to predict the signed dis-
tance d(x) = G0(w,x) between the query point x and the
shape surface, where the density function σ(x) can be trans-
formed from d(x) [11, 15, 16] for volume rendering [10].
The incorporation of SDF leads to higher-quality geometry

*Equal contribution.

in terms of expressiveness view consistency and clear defi-
nition of the surface.

In this paper, we mainly adopt StyleSDF [11] due to its
high-quality geometry surface and high-fidelity texture. In
StyleSDF, the Sigmoid activation function σ is replaced by
σ(x) = Kα (d(x)) = Sigmoid (−d(x)/α) /α, where α is
a learned parameter that controls the tightness of the density
around the surface boundary.

2. Implementation Details

CIPS-3D Baseline. Following CLIPS-3D [18], we fine-
tune G1 of StyleSDF on the toonified images with identical
optimization parameters in the official implementation. The
fine-tuning time for one style costs 10 V100 minutes.

E3DGE Baseline. Following E3DGE [9], we first fine-
tune G0 for 400 iterations with batch size 24, and fur-
ther fine-tune G1 for 400 iterations with batch size 8.
All hyper-parameters are left unchanged with the official
StyleSDF [11] implementation. The overall fine-tuning
time for one style costs around 30 minutes on a single V100
GPU.

StyleGAN-NADA Baseline. We reproduce StyleGAN-
NADA [5] on StyleSDF with the following modifications.
For G0 optimization, we fix the pre-trained mapping net-
work, affine code transformations, view-direction MLP,
color-prediction MLP, and density-prediction MLP. For G1

optimization, we follow the original implementation and
fine-tune all weights except toRGB layers, affine code trans-
formations, and mapping network. The k layers to optimize
are also selected adaptively using StyleCLIP global loss.
Other hyper-parameters and training procedures are left un-
changed. The whole optimization costs around 5 minutes
on a single V100 GPU.
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2.1. Additional Method Details

StyleField. Given the instance code w, style code zS , we
concatenate them along the channel dimension and send
them into a 4-layer mapping network [7]. The mapping
network first maps w ⊕ zS to a set of modulation signals
{β,γ}, where β = {βi},γ = {γi}. To associate the
given codes to the corresponding deformation, the modu-
lation signals will be injected into the MLP network, serv-
ing as FiLM conditions [12, 4, 14] to modulate its features
at different layers as fi+1 = sin(γi · (Wifi + bi) + βi).
To support multi-style code, we associate each style index
with a learnable embedding. During inference, we pass in
the corresponding style index to retrieve the style embed-
ding for conditional deformation.
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Figure 1: Inference pipeline of the proposed animation
pipeline.

Animatable Stylized Portrait Training Details. We show
the overall 3DMM animation inference pipeline in Fig. 1.
Specifically, we train the whole framework in a self-
supervised manner. In each iteration, we synthesize a batch
of pose images I = G(w), where G = G1◦G0. For 3DMM
supervision, we leverage the state-of-the-art 3DMM predic-
tor [3] to infer the pseudo ground-truth 3DMM parameter
mGT. With the synthesized training corpus, we reconstruct
the input codes m̂ = Fw(w) and ŵ = Fm(mGT) and
impose MSE reconstruction loss. We further render the re-
constructed code Ĩ = G(ŵ) and ĨM = DFR(m̂), where
DFR is a differentiable render [13] that renders the recon-
structed 3DMM mesh to image. The rendered images are
supervised with corresponding loss [3], which yields better
performance in our observations.

This training objective shall guarantee plausible 3DMM
editing using the procedure stated in the main context.
However, in practice, we find the training is unstable and
predicted codes are not disentangled well during inference.
We make the following modifications to the overall training
pipeline and improve the editing performance:

First, we observe that the 3DMM head pose parame-
ters, including a head rotation R ∈ SO(3) and translation
t ∈ R3 parameters, are in contradict with the pose con-
trol of 3D GAN. This deteriorates the disentanglement of
learned codes and destabilizes the training since the pre-
dicted 3DMM codes m̃ must contain accurate head pose to
minimize the reconstruction loss with DFR(m). To address
this issue, we mask out the head rotation R and translation
t ∈ R3 dimension in all 3DMM parameters with the bi-

nary mask. This enforces all the 3DMM images IM to be
rendered from frontal pose and encourages the networks to
focus on facial expression δ ∈ R64 alignment between W
and M.

Second, to further impose identity preservation and bi-
jective mapping between two spaces, we introduce cycle
training [19] which regularizes w ≈ Fw(m̃) and m ≈
Fm(w̃). The cycle loss is also imposed on the image space.

Third, to imitate the inference pipeline, in each training
iteration, we randomly shuffle the expression dimension of
all the 3DMM code mGT within a batch and generate a new
set of codes m̃GT. The rendered image from Fm(m̃GT)
shall maintain the same identity with I with identical pose
of DFR(m̃GT). We impose the identity preservation loss [2]
and landmark loss over the rendered 3DMM image [3] as
supervisions. This strategy further reduces the domain gap
between training and inference and further improves the fi-
nal editing performance.

Fourth, we further leverage the style-based hierarchical
structure within StyleSDF and reduces the attribute entan-
glement. Specifically, rather than using the edited W code
ŵ∆ for all the style layers in G, we conduct layer-wise edit-
ing effect analysis and find that only the first 2 layers of
G0 will handle the expression-relevant information of the
synthesized image. Using the edited code for later layers
will result in other attributes editing, e.g., adding glasses or
changing the hair structure. Therefore, we leave the remain-
ing 7 layers of G0 and all 10 layers in G1 unchanged and
only use the edited code for the top 2G0 layers. This yields
better disentanglement during the 3DMM-controlled style
editing.

Training-wise, we adopt identical MLP architecture
from PixelNeRF [17] to implement both F∗ networks and
adopt a batch size of 4 with learning rate 5 × 10−4 during
the optimization. The networks are trained for 50, 000 iter-
ations, which costs around 2 days on a single V100 GPU.
Please refer to the released code for more details.

2.2. Additional Ablation Study

The robustness of the number of style codes is ablated in
Table 1. Experiments are conducted with 1, 2, and 5 styles
per model so that under each setting the 10 styles can be
evenly divided into different runs for the sake of compari-
son.

Table 1: Ablation on the number of styles.

# styles per model 1 2 5 10
Identity similarity↑ 0.795 0.776 0.784 0.781
FID↓ 27.5 28.1 27.9 27.6

The effectiveness of the elastic loss is also ablated quali-
tatively. As shown in the visualized mesh in Fig. 2, the elas-



Table 2: Quantitative evaluation in terms of identity
similarity↑. DEFORMTOON3D achieves the best identity
consistency over all the 10 styles.

Domains CIPS-3D E3DGE NADA Ours
Pixar 0.765 0.748 0.564 0.812
Comic 0.643 0.614 0.496 0.729
Slam Dunk 0.672 0.765 0.552 0.780
Caricature I 0.648 0.592 0.455 0.708
Caricature II 0.655 0.698 0.538 0.785
Caricature III 0.637 0.644 0.495 0.725
Croods 0.796 0.831 0.626 0.860
Shrek 0.708 0.794 0.599 0.835
Rapunzel 0.603 0.696 0.564 0.782
Hiccup 0.684 0.688 0.464 0.796
Average 0.681 0.707 0.535 0.781

Table 3: Quantitative evaluation in terms of FID↓. DE-
FORMTOON3D achieves the best FID over 9 of the 10
styles.

Domains CIPS-3D E3DGE NADA Ours
Pixar 33.6 36.8 39.9 21.5
Comic 61.9 44.8 70.9 33.3
Slam Dunk 78.1 41.8 75.9 37.3
Caricature I 28.7 30.1 52.9 16.0
Caricature II 76.7 58.1 102.6 56.4
Caricature III 47.1 25.8 54.8 27.2
Croods 36.9 30.9 58.5 22.5
Shrek 36.0 32.1 47.2 20.3
Rapunzel 65.0 30.5 44.1 17.2
Hiccup 42.3 32.8 46.6 24.6
Average 50.6 34.0 59.3 27.6

tic loss is effective in preventing discontinuous deformation
and leads to smoother geometry in the styled space.

Figure 2: Ablation on elastic loss. Without v.s. with elastic
loss for a) female and b) male, respectively.

2.3. Additional Quantitative and Qualitative Re-
sults

The detailed breakdown of toonification fidelity and
quality are shown in Tab. 2 and Tab. 3 respectively. We
include more qualitative experiment results here. In Fig. 3
we include more comparisons with the baseline methods,
which demonstrates that DEFORMTOON3D produces better

quality against existing methods. In Fig. 4 we show more
toonification results over real images. The proposed meth-
ods yield plausible results with consistent identity preserva-
tions. We further include the stylized texture and shape pair
in Fig. 5 and validate that our method produces high-quality
stylization over both texture and shape.



Figure 3: Additional qualitative comparisons with baseline methods. DEFORMTOON3D produces better performance
against all baselines regarding toonification fidelity, diversity and identity preservation. Better zoom in.
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Figure 4: Additional results of DEFORMTOON3D on the real images. Our method enables multiple styles toonification
with a single model, where both the texture and the geometry matches the target domain.



Figure 5: Additional results of DEFORMTOON3D with stylized texture and shape.
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