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Abstract

In this supplementary file, we first present more details
about our experiments, including more implementation de-
tails and results of the ablation experiments. For efficiency
issues, we also provide a comparison based on different
sampling steps. Finally, we provide quantitative compar-
isons with more methods for the anomaly detection task.

Additionally, more qualitative results of our DiffAD are
shown to visualize the effectiveness of our method.

1. Implementation Details
In this section, we provide more details of our ablation

experiments, including two diffusion-based DiffAD variants
with different ways of adding conditions (e.g. DiffADf&r

and DiffADc), and two variants with different inputs to the
discriminative sub-network (e.g. DiffADno inter and Dif-
fADx̃a inter). We provide more implementation details and
the specific experimental results of each class.

1.1. Variants of conditions

Besides our noisy condition embedding, we also pro-
vide two alternative methods: (i) injecting noise to inputs
and then reconstructing based on diffusion models (Dif-
fADf&r), (ii) concatenating the latent vector c of the sim-
ulated anomalous sample as the condition during training
of diffusion models (DiffADc).

1.1.1 DiffADf&r

DiffADf&r trains a diffusion model solely on normal sam-
ples without conditions. During the sampling stage, the test
instance is first injected noise by a forward process. Then
the noisy version of the test sample is taken as input and
gradually denoised by the diffusion model. The anomalous
features are damaged by the noise while some global infor-
mation is retained, so the anomalous samples can be recon-
structed to normal ones. However, the time step t of the
forward process needs to be carefully selected, for a small t
may retain anomalous features while a large t may lose too
much information. Setting the total length T of the Markov

Class Df&r Dc Dno Dx̃a
DiffAD
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Carpet 97.9 94.5 96.5 98.2 98.3
Grid 100 100 100 100 100

Leather 100 100 100 99.7 100
Tile 90.5 100 100 100 100

Wood 99.8 100 99.7 99.8 100

ob
je

ct

Bottle 97.8 97.4 99.1 97.9 100
Cable 84.1 78.1 88.5 90.0 94.6

Capsule 91.0 94.2 92.4 95.2 97.5
Hazelnut 99.6 100 92.5 98.4 100
Metal Nut 99.9 98.1 97.4 99.4 99.5

Pill 90.2 88.6 94.7 96.8 97.7
Screw 89.3 93.7 94.8 96.6 97.2

Toothbrush 99.4 99.7 98.3 99.7 100
Transistor 81.3 93.0 92.6 89.8 96.1

Zipper 98.2 99.9 99.9 99.8 100
Average 94.6 95.8 96.4 97.4 98.7

Table 1. Results for anomaly detection with AUROC metric on
MVTec-AD, compared with other DiffAD variants.

chain to 1000, we choose t = 800 as the time step to gener-
ate noisy samples. We provide specific experiment results
in Table 1 and 2.

1.1.2 DiffADc

Directly concatenating the input images as conditions dur-
ing the training process of diffusion models, DiffADc is ca-
pable of reconstructing most of the anomalous cases. How-
ever, for some hard cases especially ones with severe struc-
tural changes, some anomalous features cannot be modified
well, leading to unsatisfying reconstruction performance, as
shown in Figure 1.

1.2. Variants of inputs

Table 1 and 2 report the specific results of vari-
ants trained (i) without the interpolated channels (Dif-
fADno inter), (ii) with decoding the latent vector c of the
anomalous input into x̃a as the additional channels, i.e.
λ = 1 (DiffADx̃a inter ) and (iii) with interpolated chan-
nels with λ = 0.5 (DiffAD). From the experiment results,



Class DiffADf&r DiffADc DiffADno inter DiffADx̃a inter DiffAD
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Carpet 95.5 / 64.6 94.6 / 54.2 96.6 / 55.2 96.4 / 66.2 98.1 / 74.1
Grid 98.5 / 71.2 99.4 / 63.4 99.6 / 69.1 99.6 / 70.6 99.7 / 73.7

Leather 97.4 / 71.2 97.8 / 61.1 98.6 / 69.5 97.6 / 58.0 99.1 / 73.7
Tile 87.7 / 56.1 99.0 / 95.9 99.0 / 95.0 99.4 / 95.9 99.4 / 95.1

Wood 95.3 / 78.2 95.7 / 68.1 94.2 / 66.2 97.1 / 71.3 96.7 / 80.0

ob
je

ct

Bottle 94.9 / 66.8 97.2 / 79.5 98.4 / 83.5 98.5 / 84.6 98.8 / 87.4
Cable 87.5 / 36.8 81.6 / 27.9 92.7 / 39.5 96.0 / 59.9 96.8 / 64.9

Capsule 89.3 / 35.5 79.6 / 28.5 93.6 / 47.4 93.5 / 43.9 98.2 / 54.4
Hazelnut 97.1 / 69.7 99.1 / 77.4 96.8 / 61.7 99.1 / 76.6 99.4 / 85.9
Metal Nut 97.6 / 89.4 98.3 / 90.0 98.5 / 91.9 99.2 / 94.8 99.1 / 94.4

Pill 95.9 / 41.8 95.7 / 47.1 96.6 / 41.2 97.6/ 52.9 97.7 / 68.9
Screw 87.2 / 35.2 95.4 / 54.6 98.4 / 54.6 98.7 / 50.3 99.0 / 58.5

Toothbrush 96.6/ 46.9 98.6 / 62.1 98.8 / 68.0 97.8 / 60.6 99.2 / 70.1
Transistor 85.8 / 32.8 78.5 / 31.0 93.7 / 56.6 89.8 / 40.6 93.7 / 60.2

Zipper 97.6 / 63.4 98.5 / 75.6 98.8 / 77.3 98.8 / 78.0 99.0 / 77.8
Average 93.6 / 57.3 93.9 / 61.1 97.0 / 65.1 97.3 / 67.0 98.3 / 74.6

Table 2. Results for anomaly localization with AUROC / AP metric on MVTec-AD, compared with other DiffAD variants.
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Figure 1. Visual comparisons between (a) the anomalous inputs;
the reconstruction outputs of (b) DiffADc, and (c) DiffAD.

the interpolated channels play more critical roles in classes
with high diversity, such as hazelnut and cable.

2. Computational Complexity

2.1. Accuracy and training efficiency

The initial DDPM samples images by denoising noise
step by step, leading to low inference speed. DDIM acceler-
ates the sampling process, increasing the sampling speed by
10 to 50 times. The latent diffusion models shift to the latent
space, further reducing training and sampling overheads.
DDPM takes 1000 iterations to generate samples, while the
latent diffusion model only takes 50 steps to achieve sat-
isfactory results. In our DiffAD, the sampling steps of the
reconstructive sub-network can be further reduced to raise
efficiency. As shown in Table 4, even taking 10 steps to

Class [3] [2] [5] [4] [6] Ours
Carpet 98.9 99.8 98.7 100 96.9 98.3
Grid 100 96.7 98.2 97.6 100 100
Leather 100 100 100 97.7 99.6 100
Tile 99.3 98.1 98.7 98.7 98.6 100
Wood 99.2 99.2 99.2 99.6 98.8 100
Bottle 100 99.9 100 100 100 100
Cable 95.0 92.7 99.5 100 96.8 94.6
Capsule 96.3 91.3 98.1 99.3 96.1 97.5
Hazelnut 99.9 92.0 100 96.8 99.9 100
Metal Nut 100 98.7 100 91.9 97.2 99.5
Pill 96.6 93.3 96.7 99.9 95.3 97.7
Screw 97.0 85.8 98.1 99.7 99.6 97.2
Toothbrush 99.5 96.1 100 95.2 99.8 100
Transistor 96.7 97.4 100 99.1 95.4 96.1
Zipper 98.5 90.3 98.8 98.5 99.8 100
Average 98.5 95.5 99.1 98.3 98.2 98.7

Table 3. Results for anomaly detection with AUROC metric on
MVTec-AD, compared with more baseline methods.

sample images in the training stage of the discriminative
sub-network, our method can still achieve comparable re-
sults especially in some classes with relatively simple pat-
terns such as some texture type classes. Therefore, the com-
putation burden brought by diffusion models can be greatly
reduced.

2.2. Inference Time

Inference time depends on the number of iterations dur-
ing sampling, which is set at 5 during testing in our experi-
ments. As shown in Table 5, our method strikes a good bal-



Steps 10 20 50
Class Det. Loc. Det. Loc. Det. Loc.
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Carpet 98.1 97.9 / 72.3 98.0 97.9 / 73.5 98.3 98.1 / 74.1
Grid 100 99.6 / 73.9 99.8 97.9 / 73.5 100 99.7 / 73.7

Leather 100 98.7 / 66.8 100 98.6 / 66.4 100 99.1 / 73.7
Tile 100 99.3 / 95.1 100 99.2 / 94.9 100 99.4 / 95.1

Wood 100 96.3 / 78.7 100 96.1 / 77.9 100 96.7 / 80.0
ob

je
ct

Bottle 99.3 98.7 / 85.1 99.5 98.7 / 87.2 100 98.8 / 87.4
Cable 93.6 95.8 / 61.1 92.5 96.0 / 58.4 94.6 96.8 / 64.9

Capsule 96.9 95.7 / 47.5 98.3 96.9 / 48.9 97.5 98.2 / 54.4
Hazelnut 99.8 99.4 / 85.6 100 99.3 / 84.9 100 99.4 / 85.9
Metal Nut 98.2 99.2 / 94.2 98.4 99.1 / 94.4 99.5 99.1 / 94.4

Pill 97.2 96.7 / 58.3 97.5 97.6 / 66.3 97.7 97.7 / 68.9
Screw 96.8 98.0 / 57.3 96.8 98.3 / 59.3 97.2 99.0 / 58.5

Toothbrush 99.4 98.9 / 67.5 99.4 98.9 / 68.3 100 99.2 / 70.1
Transistor 93.6 90.9 / 53.2 94.1 92.6 / 57.5 96.1 93.7 / 60.2

Zipper 99.7 99.0 / 79.0 100 99.0 / 77.5 100 99.0 / 77.8
Average 98.2 97.6 / 71.7 98.3 97.9 / 72.5 98.7 98.3 / 74.6

Table 4. Comparison with different sampling steps of the reconstructive sub-network.

Method Times(s) Det. Loc.
DiffAD5 0.10 98.7 98.3 / 74.6
DRAEM [7] 0.01 98.0 97.3 / 68.4
PaDim [2] 0.19 95.3 97.4 / 55.0
PatchCore-10% [5] 0.22 99.0 98.1 / 63.1

Table 5. Results for average inference time, detection (Det.) and
localization (Loc.) on MVTec-AD with NVIDIA Tesla V100.

ance between efficiency and performance. Though slower
than AE-based SOTA (DRAEM), our efficiency is superior
to other non-AE SOTAs, and meets practical application re-
quirements.

3. Additional Results
3.1. Quantitative Results

We have compared our method with reconstruction-
based methods in the anomaly detection task. We pro-
vide more qualitative comparisons with other methods in
Table 3, including distillation-based method: RDistillation
[3]; representation-based methods: PaDim [2] and Patch-
Core [5]; flow-framework-based method: CFlow [4]; and a
method based on score-based generative model: Score-DD
[6]. Our method achieves comparable results to previous
best-performing methods with 98.7% of AUROC.

3.2. Qualitative Results

Among the MVTec-AD [1] dataset, some given ground
truth anomaly masks are not so accurate, resulting in an un-
derestimated score in localization. We provide more quali-

tative examples in Figure 2. For example, the ground truth
covers the entire surface of the pill (the 5th column), yet
only the yellow dots are anomalous. Our predicted mask
successfully distinguish the anomalies, but the difference
with the ground truth mask increases the performance er-
ror.
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