
A. Details of the framework for splitting and merging clusters
In this section, we provide details for the Metropolis-Hastings framework. In the Gaussian Mixture Model, we have

three sets of parameters, (⇡i, µi,⌃i) where ⇡i is the mixture weight and µi,⌃i are the mean and covariance matrix. These
parameters are assumed to be sampled from a prior distribution. When µi and ⌃i are unknown for the multivariate Gaussian
distribution, we adopt the Normal Inverse Wishart (NIW) distribution as the prior to sample them for algebraic convenience,
because NIW distribution is a conjugate prior and the conjugacy property can lead to a closed-form expression of the posterior.

The Inverse Wishart (IW) distribution is defined as follows:
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where ⌃i is a d⇥ d Symmetric and Positive Definite (SPD) matrix, ⌫ > d� 1,  2 d⇥d is SPD, and �d is a d-dimensional
multivariate factorial function. The positive real number ⌫ and the SPD matrix  are the parameters of the IW distribution.
The data distribution determined by µi and ⌃i follows NIW distribution, if the joint probability density function is defined by
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where m 2 d,  > 0, and N (µi;m,
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⌃i) is a d-dimensional Gaussian with mean m and covariance 1

⌃i evaluated at µi.
Given a set of features Zi (with Ni = |Zi|) assigned to the Gaussian component µi,⌃i, we can have a posterior distribution

of µi,⌃i in a closed-form thanks to the conjugacy:
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where the posterior parameters are obtained by:
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In Eq.5 and 6 of the main paper, we need to calculate the marginal likelihood function of the observed data Zi by integrating
out the µi and ⌃i parameters in the Gaussian. Let ✓ = (m,, , ⌫) be the parameters of the NIW distribution. The marginal
likelihood can be defined as follows:

h(Zi; ✓) =
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with which we can compute the Eq. 5 and 6 in the main paper.



B. Estimating the number of clusters on validation set
In this section, we validate the choice of Kn

init using only the labelled data, to better reflect the real world use case. In
particular, we further split the classes in the labelled data Dl into two parts, Dl

r and Dl
p. We drop the labels in Dl

p. We verify
the effectiveness of different choice of Kn

init on Dl
p and report the results in Tab. 11. Interestingly, we observe that the initial

guess of a number around Kl

2 often leads to a good estimate.

Table 11: Results of varying the initial guessed K
n
init. ‘GT K

n’ is the ground truth number of novel classes, split from the
labelled set. Kn is the estimated number of novel classes.

Dataset K
l GT K

n
K

n
init = 1 3 5 10 20 25 50

CIFAR-10 3 2 K
n = 2 2 4 5 3 6 8

CIFAR-100 60 20 K
n = 15 18 18 20 21 22 29

ImageNet-100 25 25 K
n = 18 19 22 21 23 27 29

CUB 50 50 K
n = 38 37 41 46 49 52 50

SCars 49 49 K
n = 39 38 40 42 43 48 51

C. Convergence of the estimated class number in longer training
In Tab. 12, we show results by training the model for 800 epochs on CUB, demonstrating the convergence after longer

training.

Table 12: Results of estimated class number with longer training.

Epoch 200 400 600 700 720 740 760 780 800

GT K
n = 100 112 122 114 108 109 107 108 106 107



D. Error bars for generalized category discovery performance
We repeatedly run our method and the previous state-of-the-art three times with different random seeds to show the mean

and standard deviation values in Tab. 13 and Tab. 14, for both known and unknown class number cases. We can see that the
variation is relatively small for all methods, and our method consistently outperforms the previous state-of-the-art across the
board for both known and unknown class number cases.

Table 13: Results on generic image classification datasets.

CIFAR10 CIFAR100 ImageNet-100

No. Methods Known K PCA All Old New All Old New All Old New

(1) Vaze et al. [48] 3 7 91.5±0.4 97.9±0.2 88.2±0.6 76.9±0.3 84.6±0.3 61.5±0.2 75.0±0.3 92.1±0.2 66.6±0.4

(2) Ours (GPC) 3 7 91.9±0.2 98.2±0.3 88.6±0.1 77.6±0.4 84.9±0.4 62.7±0.4 76.7±0.4 94.3±0.2 68.8±0.3
(3) Ours (GPC) 3 3 91.9±0.4 98.2±0.3 89.1±0.2 77.8±0.3 85.3±0.2 63.5±0.2 77.3±0.4 94.6±0.4 71.1±0.3

(4) Vaze et al. [48] 7 7 88.6±0.5 96.2±0.4 84.9±0.6 73.2±0.4 83.5±0.4 57.9±0.4 72.7±0.4 91.8±0.5 63.8±0.6
(5) Vaze et al. [48] 7 3 89.7±0.4 97.3±0.5 86.3±0.4 74.8±0.5 83.8±0.4 58.7±0.6 73.8±0.4 92.1±0.5 64.6±0.6

(6) Ours (GPC) 7 7 88.2±0.4 97.0±0.5 85.9±0.3 75.1±0.5 84.4±0.4 59.9±0.6 74.9±0.5 93.2±0.4 65.5±0.3
(7) Ours (GPC) 7 3 90.6±0.3 98.2±0.4 87.1±0.4 75.7±0.5 84.7±0.6 60.9±0.4 75.7±0.3 93.4±0.4 66.8±0.5

Table 14: Results on Semantic Shift Benchmark datasets.

CUB Stanford Cars FGVC-aircraft

No. Methods Known K PCA All Old New All Old New All Old New

(1) Vaze et al. [48] 3 7 51.1±0.2 56.4±0.1 48.4±0.3 39.1±0.3 57.6±0.4 29.9±0.3 45.1±0.2 41.2±0.3 46.8±0.2

(2) Ours (GPC) 3 7 54.5±0.2 54.6±0.4 50.3±0.2 42.0±0.2 58.9±0.2 32.0±0.3 46.3±0.2 42.3±0.2 47.1±0.3
(3) Ours (GPC) 3 3 55.3±0.4 58.1±0.3 53.2±0.4 42.7±0.3 60.0±0.4 33.0±0.2 46.5±0.3 42.8±0.5 47.2±0.1

(4) Vaze et al. [48] 7 7 47.2±0.4 55.1±0.3 44.8±0.2 35.0±0.3 56.0±0.4 24.8±0.3 40.1±0.2 40.8±0.4 42.8±0.1
(5) Vaze et al. [48] 7 3 49.2±0.3 56.2±0.2 46.3±0.4 36.3±0.3 56.6±0.4 25.9±0.5 41.2±0.3 40.9±0.4 44.6±0.2

(6) Ours (GPC) 7 7 50.5±0.3 52.5±0.4 45.8±0.5 37.0±0.6 56.6±0.3 26.1±0.2 39.8±0.3 39.7±0.2 42.5±0.2
(7) Ours (GPC) 7 3 52.1±0.3 55.4±0.2 45.7±0.3 38.9±0.4 58.9±0.3 28.6±0.5 43.4±0.3 40.8±0.4 44.7±0.3

E. Standard deviation of category number estimation
In this section, we show the standard deviations of estimated category numbers by repeatedly running our method with

different random seeds. The results are shown in Tab. 15. We can see that our method can estimate a more accurate category
number to Vaze et al. [48].

Table 15: Estimated category numbers.

Estimated K
n CIFAR-10 CIFAR-100 ImageNet-100 CUB-200 Stanford-Cars

Ours (GPC) 5±1.4 22±2.6 54±3.1 110±4.2 104±3.4
Vaze et al. [48] 4±1.2 23±1.5 59±4.3 131±5.6 132±2.5

Ground Truth 5 20 50 100 98



F. Further comparison with ORCA
ORCA [2] is originally pretrained only on the target dataset D, i.e., the data that our model is trained on. We have shown

the comparison using ImageNet pretrained features from DINO [3] for both ORCA [2] and our method in the main paper.
In Tab. 16 and Tab. 17, we provide additional comparison with ORCA, showing the effects of pretrained models using different
data.

Table 16: Comparison with ORCA [2] on generic classification datasets.

CIFAR10 CIFAR100 ImageNet-100

No. Methods Pretrain All Old New All Old New All Old New

(1) ORCA [2] ImageNet 91.4 88.0 91.2 68.9 76.1 46.6 79.8 93.6 74.9
(2) Ours (GPC) ImageNet 92.0 98.3 88.7 77.4 84.8 62.4 76.5 94.0 68.5

(3) ORCA [2] Target 90.6 87.2 90.1 64.7 73.2 42.1 78.7 93.4 72.4
(4) Ours (GPC) Target 91.1 87.8 90.5 65.0 74.3 42.6 79.6 93.3 73.1

Table 17: Comparison with ORCA [2] on SSB [49].

CUB SCars FGVC-Aircraft

No. Methods Pretrain All Old New All Old New All Old New

(1) ORCA [2] ImageNet 45.2 57.2 29.7 37.0 68.2 22.6 47.1 45.3 42.3
(2) Ours (GPC) ImageNet 54.2 54.9 50.3 41.2 58.8 31.6 46.1 42.4 47.2

(3) ORCA [2] Target 42.9 52.0 28.4 40.3 57.0 31.4 44.4 40.7 44.1
(4) Ours (GPC) Target 45.0 54.2 29.1 41.2 57.1 32.1 46.2 41.0 45.2



G. Qualitative results
In this section, we provide the visualization of the images grouped using the DINO features and our GPC trained features.

The results are presented in each row of Fig. 4 and Fig. 5. The DINO features are effective to some extent when grouping
images, but the results are still not satisfactory as the features are not tuned on the downstream tasks with a clear objective
(see Fig. 4). On the other hand, after tuning the representation using our method, images from the same category can be
grouped together (see Fig. 5).

Figure 4: k-means grouping of features of DINO [3] on CUB-200 dataset. Notice that the grouping are roughly based on
object pose or background, but we would want the clustering to be done to discriminate between different species. The kNN
images to the randomly picked prototype (i.e., cluster center) are shown, from left (nearest) to right (furthest).

Figure 5: The prototype (i.e., the Gaussian mean vector in our method) and the retrieved nearest neighbor on GPC repre-
sentations in the CUB-200 dataset. Images are grouped by different bird species. The kNN images to the randomly picked
prototype (i.e., cluster center) are shown, from left (nearest) to right (furthest).

We also present t-SNE projections of the learned features on both CUB-200 and ImageNet-100 datasets. From Fig. 6 we
can see that on CUB-200, the DINO features can not separate different categories very well, while our method and [48] can
have a clear category boundary. From Fig. 7, we found that although the t-SNE projections on ImageNet-100 appear to be



similarly discriminative among DINO, [48], and our method, while further finetuning the representation from DINO can
significantly improve the performance for the task of GCD.

Figure 6: The t-SNE plot of the features on the CUB-200 dataset.

Figure 7: The t-SNE plot of the features on the ImageNet-100 dataset.



H. Limitation and negative societal impact
It should noted that although our method achieves the state-of-the-art results on the task of generalized category discovery,

the classification performance is still far from those models trained with full human supervision. Furthermore, when the class
number is unknown, there is still a noticeable performance gap w.r.t. the unknown category number case. Besides, real-world
data is much more complex and difficult than the curated data we used. Therefore, careful validation and adaptation to specific
application scenarios should be tested before deploying the model for any real-world use.

I. License of used datasets
All the datasets used in this paper are permitted for research use. CIFAR-10 and CIFAR-100 datasets [31] are released

under the MIT license, allowing use for research purposes. The terms of access of the ImageNet dataset [8] allow the use for
non-commercial research and educational purposes. Similar to ImageNet, the Stanford Cars [30] allows the use for research
purposes. The FGVC aircraft [36] dataset was made available exclusively for non-commercial research purposes by the
authors. The CUB-200 [50] dataset also allows research use.


