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Abstract

In this document, we provide the additional supplementary information for the paper “Spherical Space Feature Decomposi-
tion for Guided Depth Map Super-Resolution”. This file contains:
(I ) The detail architecture for Restormer Block and the Depth Encoder (ED) in Sec. 3.1.2.
(II ) Training details for the Defect Patches Classifier of Spherical Contrast Refinement (SCR) module in Sec. 3.1.4.
(III ) Detailed illustration for the training&testing datasets in Sec. 4.1.
(IV ) Detailed introduction for the selection and analysis of hyperparameters in Sec. 4.1.
(V ) More qualitative comparison fusion results in Sec. 4.2.

1. Detailed introduction for ED and ER
The detailed architecture for Depth Encoder ED (similar to the RGB Encoder ER) and the Restormer block [10] in ED are

illustrated in Fig. 1.

2. Training details for the Defect Patches Classifier of spherical contrast refinement (SCR)
We train the Defect Patches Classifier (DPC) on our synthetic “imperfect image dataset” and we utilize the following

settings. We use inputs of size 64×64 with a batch size of 256. We train the model for 300 epochs with an initial learning
rate of 0.001 (decrease by 10× every 100 epochs), momentum of 0.9 and weight decay of 10−6. The standard multi-class
cross-entropy loss is used to train the network. We achieve a training accuracy of 97% and a validation accuracy of 92% in the
validation set.

3. Detailed introduction to datasets
We adopt four widely-used benchmarks (NYU v2 [8], Middlebury [2, 7], Lu [6] and RGBDD dataset [1]) for the guided

depth super-resolution task. The preprocessing and separation of NYU v2, Middlebury, and Lu datasets follow [4, 5, 9, 3, 12],
and that of RGBDD dataset follows [1, 12].

• NYU v2 dataset1 [8]: it consists of 1449 RGBD image pairs captured by the Microsoft Kinect [11]. We use the first
1,000 images in this dataset for training, and the rest 449 images for testing.

• Middlebury dataset2 [2, 7]: we use 30 image pairs from 2001-2006 datasets provided by Lu et al. [6] for testing.

*Corresponding author.
1https://cs.nyu.edu/silberman/datasets/nyu depth v2.html
2https://vision.middlebury.edu/stereo/data/

https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
https://vision.middlebury.edu/stereo/data/
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Figure 1: Detail architecture for Depth Encoder and the Restormer block of SSDNet.

Interval training epoch for SCR fine-tuning
Scaling factor 1 2 5 10 20 50

×4 1.57 1.58 1.60 1.61 1.72 1.83
×8 3.08 3.08 3.10 3.11 3.22 3.38
×16 5.81 5.81 5.82 5.84 6.23 6.72

Table 1: The impacts of interval training epoch M for performing SCR fine-tuning on the SSDNet.

• Lu dataset3 [6]: this dataset consists of 6 RGBD image pairs acquired by ASUS Xtion Pro camera. We use it for testing.

• RGBDD dataset4 [1]: a new RGBD dataset benchmark proposed in CVPR 2021 [1] with four main categories: portraits,
models, plants, and lights. The RGB images and LR depth maps are collected by Huawei P30 Pro and the HR depth
maps are captured by Helios ToF camera5 produced by LUCID vision labs. In our experiments, 297 portraits, 68 plants,
and 40 models are utilized for testing. For the real-world branch, 1586 portraits, 380 plants, and 249 models are for
training, and the test set is the same as above.

4. Selection for the hyperparameters
In this section, we determine the interval training epoch M for performing Spherical Contrast Refinement (SCR) fine-tuning.

For our proposed SSDNet, SCR fine-tuning is important in addressing the detail issue and further improving the effectiveness
of GDSR. We show the results for performing SCR fine-tuning once at every different epoch in training, and the performance
in the validation set is shown in Tab. 1.

Obviously, when M is below 10, there is no significant improvement in performance, but there is an increase in training
time. Finally, to have a good balance of model performance and training cost, we set M = 10 for the other experiments.

3http://web.cecs.pdx.edu/ fliu/project/depth-enhance/
4http://mepro.bjtu.edu.cn/resource.html
5https://thinklucid.com/helios-time-of-flight-tof-camera/

http://web.cecs.pdx.edu/~fliu/project/depth-enhance/
http://mepro.bjtu.edu.cn/resource.html
https://thinklucid.com/helios-time-of-flight-tof-camera/
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Figure 2: Error maps for visual comparisons in 8× upscaling.
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Figure 3: Error maps for visual comparisons in 8× upscaling.

5. More qualitative comparison results
More qualitative comparison results are displayed in Figs. 2 to 5. Our method has excellent performance under multiple

datasets and different downsampling scales, showing that our method is suitable for different objects and imaging conditions,
and can outperform SOTA methods.
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Figure 4: Error maps for visual comparisons in 16× upscaling.
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Figure 5: Error maps for visual comparisons in 16× upscaling.
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