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Figure A. Our method takes multi-view images with 2D pseudo labels for training. From the results on public datasets [10, 15, 22, 23] and
in-the-wild images, we demonstrate that our method can estimate accurate 3D hand pose with single- or arbitrary multi-view images.

In the supplemental material, we provide:

§A Video Demo.

§B Implementation Details.

§C More Experiments and Results.

§D Discussions.

A. Video Demo
We provide additional sequential qualitative results in

the attached video.

B. Implementation Details
B.1. Single-View Network

As described in our paper, we only adopt a simple single-
view estimation network for our framework. The details of
our single-view network are shown in Fig. B. The network
only consists of a backbone (ResNet [5]) for image feature
extraction, a regression head for regressing the MANO [14]
parameters, and a MANO layer for parameters decoding to
obtain hand mesh. Besides, the regression head is quite sim-
ple, only stacking 1 global average pooling (GAP) layer, 2
fully-connected layers, and 1 Leaky-ReLU layer.

B.2. Multi-View Graph Feature Extraction Module

Here, we will provide more details about our multi-view
graph feature extraction module. The multi-view graph ex-
traction conducts view-shared graph extraction (VSGFE)
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Figure B. The details of our single-view estimation network.

for each view at first. VSGFE consists of three view-shared
modules, a location embedding (LE) module, a spatial-
aware initial graph building (SAIGB) module [21], and a
joint feature sampler (JFS). LE uses an MLP to map the
predicted 3D joints Pi ∈ R21×3 and MANO pose param-
eters (without root joint) θ

′

i ∈ R15×3 from the single-view
estimation network to the joints embeddings G1

i ∈ R21×64.
SAIGB first uses an MLP to scale the channel number of
the high-level feature maps H4

i ∈ R2048×8×8 to a di-
mension 21 × 8. Then, it reshapes the features to obtain
G2

i ∈ R21×512. Motivated by [19, 20], we design a joint
feature sampler (JFS) to sample the joint-aligned features



from the middle-level feature maps. The details of our JFS
are shown in Fig. C. Given the 3D coordinates of hand
joints, we calculate its 2D projections on the feature map
using weak perspective projection, then gather the features
from nearby pixels via bilinear interpolation. In particu-
lar, we sample the joint-aligned features from three levels
of the feature maps {Hj

i }3j=1 to obtain G3
i ∈ R21×1792.

After concatenation and stack, we obtain multi-view graph
feature G ∈ R21×2368.
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Figure C. Illustration of our joint feature sampler (JFS) sampling
a level of the joint-aligned features for 2 joints.

B.3. Architecture Details

Tab. A shows the details of our complete architecture.
Unless otherwise specified, MLP denotes using 2 fully-
connected layers and 1 Leaky-ReLU layer (same as the
regression head in Fig. B without GAP). We use 2 layers
of CVA and VSF in the dual-branch cross-view interaction
module (e.g. CVA-1 denotes the first CVA branch).

B.4. Loss Weights

To balance multiple loss functions, we introduce α and γ
in our loss function. For all of our experiments, we set α =
0.01 and γ = 100. It is worth mentioning that adjusting α
to a correct scale is important for self-supervised learning
because α balances the strength of hand-prior information
provided by the MANO and the trustworthiness of pseudo
labels. When the pseudo labels are reliable, we can reduce
α to trust the pseudo labels more. Otherwise, we should
enlarge α to use MANO to regularize irrational poses.

B.5. Hand Center Coordinate System

As shown in Fig. A, our method can be used for multi-
view inference with or without camera extrinsics. If the
camera extrinsics are known (HanCo [22] and Assem-
bly101 [15]), the coordinate system of the hand center is
the world coordinate system. If the extrinsics are not avail-
able (H2O [10] and in-the-wild), we choose one view as the
reference view, and the center is located in this reference
view coordinate system.

#Out #In Shape Operation Notation

Backbone:
1 / (8, 3, 256, 256) Input I
2 1 (8, 64, 64, 64) ResLayer
3 2 (8, 256, 64, 64) ResBlock1 H1

4 3 (8, 512, 32, 32) ResBlock2 H2

5 4 (8, 1024, 16, 16) ResBlock3 H3

6 5 (8, 2048, 8, 8) ResBlock4 H4

Single-View Decoder:
7 6 (8, 2048) GAP
8 7 (8, 48) MLP θ
9 7 (8, 10) MLP β

10 7 (8, 3) MLP s, t
11 8,9 (8, 778, 3) MANO M
12 11 (8, 21, 3) Regressor P

Multi-View Graph Feature Extraction:
13 8,12 (8, 21, 64) LE G1

14 6 (8, 21, 512) SAIGB G2

15 3,4,5 (8, 21, 1792) JFS G3

16 13,14,15 (8, 21, 2368) Concat
17 16 (168, 2368) Reshape G

Dual-Branch Cross-View Interaction:
18 17 (168, 2368) CVA-1
19 17 (168, 2368) VSF-1
20 17,18,19 (168, 2368) Add
21 20 (168, 2368) CVA-2 Ft(G)

22 20 (168, 2368) VSF-2 C
′

23 20,21,22 (168, 2368) Add G∗

Parameters Regression:
24 23 (168, 32) MLP
25 24 (8, 672) Reshape
26 25 (8, 48) MLP θ∗

27 25 (8, 3) MLP s∗, t∗

28 9,26 (8, 778, 3) MANO M∗

29 28 (8, 21, 3) Regressor P ∗

Table A. The architecture of our whole network. We show the output
shapes after every operation when adopting ResNet-50 as the backbone
and taking 8 views of images of resolution 256 × 256 as the input. #Out
and #In denotes the output and input index of this operation. In the last
column, we specify those outputs that have notations in our paper.

C. Experiments and Results

C.1. Different Settings

We show the different assumptions of our experiments
in Tab. B. There are generally two settings, and in both set-
tings, we do not require GT centers. For single-view infer-
ence, which corresponds to Tab.1 and Tab.2 in the main text.

Scheme Stage Intrinsic Extrinsic GT Center

1 Train × ×/✓ ×
Test × × ×

2 Train × ✓ ×
Test ✓ ✓ ×

Table B. Different assumptions for HaMuCo.



Extrinsics are optionally used during the training phase, and
all experiments that utilize camera extrinsics are marked
with �. The multi-view inference is an additional bene-
fit of our method, corresponding to Tab.3. Only in the test
phase, do we require both intrinsic and extrinsic to obtain
the 3D pose of absolute scale.

C.2. Datasets

Assembly101 [15] is an action recognition dataset that con-
sists of 4,321 videos recording different persons manipulat-
ing toys. It is recorded by 8 simultaneous static cameras and
4 egocentric cameras. We only use 8 sequences of 8 static
cameras for training and present the qualitative results on
an additional sequence.
H2O [10] provides synchronized multi-view RGB-D im-
ages with two hands manipulating objects. The data cap-
tured by 4 static cameras and 1 egocentric camera consists
of 344,645 frames for training, 73,380 frames for validation
and 153,620 frames for testing. We only evaluate our cross-
dataset performance on this dataset using one sequence with
1 egocentric camera and 2 static cameras.

C.3. Pseudo Labelling

We obtain the 2D joints pseudo labels at an offline
stage through an implementation1 of OpenPose [1, 16]. For
HanCo [22], we directly input the images with the original
size due to the images having been cropped already. For As-
sembly101 [15], we use a hand detector to locate and crop
the hands. Then, we input the cropped images to obtain the
pseudo labels.

C.4. Model Analysis

Different view number for training and inference. Here,
we explain the camera settings of the experiments evalu-
ating the performance of our models using different view
numbers for training and inference (Fig. 3 in the main sub-
mission). Specifically, all the camera settings follow two
rules. First, we only test the performance on a specific
view for fair comparisons, considering only one specific
view is available for all the experimental settings. Second,
we choose camera combinations that cover a wider field of
vision so that more information can be provided when the
camera number has been determined.
Multi-view weakly-supervised learning. Our method can
also be applied to weakly-supervised learning. Therefore,
we conduct an experiment to show the performance of our
model using weak 2D supervision. Considering the 2D la-
bels from different views of the HanCo dataset are projected
by the same 3D label, using all the 2D labels as weak su-
pervisions may introduce implicit 3D supervision. There-
fore, we only utilize the 2D labels from a specific view for

1https://github.com/Hzzone/pytorch-openpose

NMPJPE ↓ PA-MPJPE ↓
Single Interact Fusion Single Interact Fusion

Self-supervised learning:
11.17 8.28 7.75 7.22 5.42 5.40

Weakly-supervised learning (one view of the 2D ground-truth is available):
11.06↑0.11 7.84↑0.44 6.84↑0.91 6.87↑0.35 4.49↑0.93 4.44↑0.96

Table C. Performance comparisons of our method under self- and weak-
supervised settings.

Method Data Backbone PA-JE↓ PA-VE↓ F@5↑ F@15↑
Fully-Supervised Method:
YoutubeHand [9] FreiHAND Res50 8.4 8.6 0.61 0.97
I2L-MeshNet [12] FreiHAND Res50† 7.4 7.6 0.68 0.97

METRO [11] FreiHAND HRNet 6.7 6.8 0.72 0.98
Tang et al. [17] FreiHAND Res50 6.7 6.7 0.72 0.98

I2UV-HandNet [2] FreiHAND Res50 6.7 6.9 0.71 0.98
MobRecon [3] FreiHAND Res50† 6.1 6.2 0.76 0.98

Ours-SV Frei. Res50 7.5 7.5 0.68 0.97

Weakly-Supervised Method:
S2HAND [4] Frei. EffiNet-b0 / / 0.42 0.89

Ours-SV Frei. EffiNet-b0 8.5 8.6 0.61 0.97
Ours-SV Frei. Res50 9.8 9.9 0.55 0.95

Self-Supervised Method:
S2HAND [4] Frei. EffiNet-b0 11.8 11.9 0.48 0.92

Ours-SV Frei. EffiNet-b0 11.6 11.7 0.49 0.93
Ours HanCo EffiNet-b0 6.3 6.8 0.71 0.99
Ours HanCo Res50 6.2 6.7 0.72 0.99

Table D. Quantitative results on the FreiHAND evaluation set. The no-
tation † denotes using a stacked backbone structure. ”Our-SV” refers to
training only with our single-view network.

weakly-supervised learning. During the training, we set the
confidence of the labels to 1. As shown in Tab. C, when in-
corporating the label of a view, the performance can be im-
proved. The performance improvement of single-view and
interaction without alignments is not significant compared
to others. The reason may be two folds. First, it is diffi-
cult to obtain a correct rotation from single-view inference.
Second, multi-view inference without extrinsics is not able
to well correct the global rotation error from every single
view. In summary, our method can benefit from available
2D labels, especially when using multi-view images for in-
ference.

C.5. Results for Human Pose Estimation

Our method can also be extended to self-supervised hu-
man pose estimation. Therefore, we conduct experiments
on the Human3.6M dataset [6] to compare with Epipolar-
Pose [8] and CanonPose [18]. We train our model following
the training setting of CanonPose [18]. When using cam-
era extrinsics for multi-view self-supervised learning, the
NMPJPE (mm↓) for EpipolarPose, CanonPose, and ours are
76.6, 74.3, and 71.1, respectively.

C.6. Additional Quantitative Results

FreiHand. Tab. D shows more quantitative comparisons
between our approach and recent fully-supervised meth-
ods. The experimental results demonstrate that our self-
supervised method achieves comparable performance to

https://github.com/Hzzone/pytorch-openpose


fully supervised methods [2, 3, 9, 11, 12, 17]. We also com-
pared our method with S2Hand [4], a hand pose estimation
method in the weakly supervised setting, which uses anno-
tated 2D labels instead of pseudo labels to estimate 3D re-
sults. The experimental results demonstrate that our method
is still effective under weak supervision.

C.7. Additional Qualitative Results

As illustrated in Fig. A, our model is capable of perform-
ing inference on multiple datasets [10, 15, 22, 23].

Fig. D shows the 2D visual comparisons between Open-
Pose, our single-view inference results, and the ground-
truth. The results demonstrate that OpenPose can obtain
plausible results for those visible joints, which is essential
for self-supervised learning. However, the major problem
with OpenPose is that it is not robust for invisible joints.
When some joints are invisible, it can predict some par-
ticularly incorrect results and tend to predict the visible
joints as the invisible ones. In contrast, our model-based
method with hand prior information obtains a more robust
performance towards different kinds of occlusions when the
multi-view self-supervised learning provides enough accu-
rate results for supervision.

Fig. E provides more visual comparisons between our
method, EpipolarPose [8], and CanonPose [18]. All these
3D predictions are obtained with the single-view inference
of the models trained by multi-view self-supervised learn-
ing. Besides, for better visualization, the predictions in the
images are results after alignment with the ground-truth.
From the predictions from 2 viewpoints, we can see that
our method can obtain more accurate 3D joints with dif-
ferent gestures, backgrounds, viewpoints, occlusions, and
objects in hands.

Fig. F displays the visualization of our method on the
testing sequence of the Assembly101 dataset. We only train
a right-hand model, and the left-hand predictions are ob-
tained using the flipped left-hand cropped images for in-
ference. The results demonstrate that our method can be
applied to more complicated situations where the available
number of hands is unknown at each time step and the oc-
clusions are severe.

Fig. G compares our multi-view inference performance
with Learnable Triangulation [7] (algebraic version). All
the models are trained with self-supervised learning. The
predictions are aligned with the ground-truth for better vi-
sualization. The results indicate that our method can gener-
ate more plausible results with multi-view inference when
the camera parameters are available.

Fig. H illustrates our cross-dataset predictions on the
testing sequence of the H2O dataset. We make use of our
model trained on the HanCo dataset to estimate the hand
poses with images from multiple uncalibrated cameras. The
results demonstrate that our method can generalize to other

multi-view settings with unknown camera parameters.
Fig. I visualizes the 2D prediction comparisons between

S2HAND [4], our method, and the ground-truth on the
evaluation set of the FreiHAND dataset [23]. The results
of S2HAND are obtained by their open-source code2 with
the provided pretrained weights. As shown in the images,
our model using multi-view self-supervised learning on the
HanCo dataset can obtain plausible single-view predictions
on the FreiHAND dataset.

Fig. J presents our failure cases on the HanCo dataset.
Most of our fails are predictions from samples with chal-
lenging viewpoints and severe occlusions. Moreover, the
failing predictions mainly fall into two patterns. One is in-
correct hand scales and centers, and the other is wrong hand
poses. Since the cross-view interaction does not explicitly
use the camera extrinsics, it is difficult for it to fix those
predictions with incorrect scale and center. However, from
those results, we can see that it can solve the incorrect hand
poses to some extent.

D. Discussions
D.1. Difference between Qiu et al. [13] and Ours

Our cross-view interaction network differs from Qiu et
al. [13] in various aspects. (1) Regarding motivation, our
cross-view interaction is designed to generate more reli-
able results for self-supervision of our single-view network
while [13] aims at fusing different views’ heatmaps for
multi-view inference. (2) In terms of representation, our
cross-view interaction utilizes compact and effective joint-
level features for dual-branch interaction, while [13] fuses
pixel-level features along the epipolar line, which can be
computationally expensive. (3) In terms of usage, our cross-
view interaction does not require camera extrinsics since we
fuse information in semantic joint space while [13] relies on
extrinsics for finding the epipolar line to do pixel feature fu-
sion.

2https://github.com/TerenceCYJ/S2HAND

https://github.com/TerenceCYJ/S2HAND
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Figure D. 2D prediction (overlayed in the images) comparisons between OpenPose, ours, and the ground-truth on the HanCo dataset.
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Figure E. 3D prediction comparisons between our method, EpipolarPose, and CanonPose on the HanCo dataset. Our prediction and the
ground-truth are shown in solid red and dashed green respectively.



View-1 View-2 View-4View-3

Figure F. 2D prediction (overlayed in the images) of our method in the testing sequence of the Assembly101 dataset. All the 2D image
coordinates are obtained by projecting the same 3D world coordinates into different views. We utilize 8 views in total for inference. Each
row shows 4 views of the projected 2D joints. The top 3 rows display the images on 4 views out of all the views, while the bottom 3 rows
present the results of another 4 views.
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Figure G. 3D prediction comparisons between our method and Learnable Triangulation on the HanCo dataset. Our prediction and the
ground-truth are shown in solid red and dashed green respectively. We use 8 views for inference and only show 4 images here.

View-1 View-2 View-3 View-1 View-2 View-3

Figure H. 2D prediction (overlayed in the images) of our method in the testing sequence of the H2O dataset. The results are obtained by
the model trained on the HanCo dataset. We use 3 views for inference without camera extrinsics.
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Figure I. 2D prediction (overlayed in the images) comparisons between S2HAND, ours, and the ground-truth on the FreiHAND dataset.
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Figure J. 2D prediction (overlayed in the images) of our failure cases on the HanCo dataset. From left to right, we show our predictions
from the single-view network, cross-view interaction network, and the ground-truth.
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