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Figure A. Visual comparisons between various methods and ground truth.

A. Qualitative Comparisons
A.1. Error Color Coding

For visualization, we use error color coding to show the
difference between our reconstructed motion and GT. The
coded RGB value of a vertex is calculated as [r, g, b] = (1−
e) × [204, 204, 204] + e × [255, 0, 0], where e is a vertex’s
error (m) clipped to 0∼1.

A.2. Comparison with GT

To go beyond error color-coding in showcasing distinc-
tions among various methods and Ground Truth (GT), we
have also integrated GT into Fig. A. The results illustrate
that our model can capture realistic motions that are close
to real motions. For more results, please refer to the supple-
mentary video.

A.3. Video Result

The most effective way to qualitatively showcase mo-
tion tracking is through video results. Therefore, in addi-
tion to the highlighted figure results in the main manuscript,
we also provide sequential qualitative comparison results
for our proposed approach with AvatarPoser [3], both in
the AMASS test set and real application scenarios. Please
kindly refer to the accompanying supplementary video.

A.4. User study.

Based on the qualitative results, we also evaluate the sub-
jective quality by conducting a user study. We randomly se-
lected 25 participants from various schools and grades who
were unfamiliar with the system. Participants rated the nat-
uralness and realism of given motion sequences on a 5-level
Likert scale. We computed mean opinion scores for each
method, randomly selecting 12 motion samples in the test
set and shuffling the list. Our method achieved 3.69 scores
while AvatarPoser gained 1.98 scores only.

B. Real-Captured Data

To evaluate the model performance in real scenarios, we
capture several sequences of real data with the correspond-
ing ground truth. The head and hands tracking signals
are captured from the PICO 4 VR device, including both
HMD and two controllers. Besides, we also use a synchro-
nized marker-based motion capture system, OptiTrack [2].
Ground-truth SMPL parameters were then obtained from
the MoCap data using MoSh++ [4]. To alleviate jittering,
we apply the temporal filter to the ground-truth sequences.
For effective testing with real-world data, using the 6DoF
(six degrees of freedom) inputs directly from the HMD and
controllers might not be suitable. This is because practi-



cal wearing configurations can lead to gaps between the de-
vices and the body joints. To fill the sim-to-real gap, we
apply empirically derived rigid transformations to convert
the devices’ 6-DoF data to joint-based representations for
evaluation. We will release our code with the above evalua-
tion samples to facilitate future research in this field [1].

C. Ablation Study
Regarding the ablation study, we also conduct additional

experiments on transformer design, more loss combina-
tions, and shorter input sequence lengths.

C.1. Transformer Design

As shown in Tab. A, removing STB or TTB both leads
to significantly worse performance, indicating the impor-
tance of modeling spatial and temporal correlation simulta-
neously.

C.2. More Loss Combinations

Our loss design substantially contributes to achieving ac-
curate motion with temporal consistency. Furthermore, it
confers benefits not only to our method but also to other re-
lated approaches, such as AvatarPoser [3], as indicated in
the main manuscript. To better substantiate the efficacy of
each individual loss term and assess the performance of dif-
ferent combinations of loss types, we conduct a comprehen-
sive set of experiments. As detailed in the main manuscript,
our total loss function consists of hand alignment loss, mo-
tion loss (velocity-short loss, velocity-long loss, and foot
contact loss), and physical loss (penetration loss and foot
height loss).

We first add each loss term to the basic loss one by one.
The results and contribution of each individual loss term are
presented at the top of Table B. As discussed in the main
manuscript, the addition of hand alignment loss is crucial to
render the entire framework end-to-end trainable and signif-
icantly enhances performance. Moreover, it better aligns the
predicted motion with observed signals, resulting in more
precise motion outputs. The widely adopted velocity-short
loss (Lv(1)) remarkably improves motion-related metrics,
such as MPJVE and Jitter, as well as the Skate metric. How-
ever, relying solely on Lv(1) may not entirely eliminate ac-
cumulated velocity errors, necessitating the inclusion of ad-

Method MPJRE MPJPE MPJVE Jitter

Ours 5.86 6.60 23.57 4.10
w/o STB 6.03 7.19 24.34 4.21
w/o TTB 6.13 7.30 27.99 5.14

Table A. Performance comparisons between our proposed method
with different transformer designs.

ditional velocity-long losses (Lv(3) and Lv(5)). Our results
indicate that velocity-long losses lead to further decreases
in all error metrics, attesting to their effectiveness. Incorpo-
rating foot contact loss to constrain foot movement slightly
enhances motion-related metrics. While the use of pene-
tration loss can significantly reduce Ground errors, it can
also result in performance degradation in other evaluation
metrics. This is because relying solely on penetration loss
induces the network to predict results above the ground to
reduce the Ground error. Complementary foot-height loss
can mitigate this issue, considerably reducing penetration
errors while improving other evaluation metrics.

Subsequently, we explore the performance of various
combinations of loss types, including hand alignment, mo-
tion, and physical losses. The bottom of Tab. B demon-
strates the performance of all different combinations. Based
on our experimental results, several conclusions can be
drawn. Firstly, it is crucial to frame the task as a sequence-
to-sequence problem and employ the motion loss function
accordingly. Secondly, hand alignment loss is a comple-
mentary component that enhances the alignment of hands
while simultaneously improving overall accuracy. Thirdly,
the physical loss term is a potent constraint that must be ap-
plied judiciously, as it can enhance performance only when
the system already attains a substantially high level of accu-
racy and smoothness in motion.

C.3. Shorter Input Sequence Length

Although we have shown the possibility of applying our
method in real scenarios in the attached video, achieving
real-time performance for the application on mobile head-
mounted displays (HMDs) with limited computing power is
still challenging and important. Therefore, migrating to the
HMDs is one of our future directions.

For exploring the possibility of our method applying to
mobile devices, we perform experiments following Proto-
col 1 to evaluate our performance with shorter sequence
lengths. The model’s ability to process shorter input se-
quences is crucial for two reasons. First, it enhances the
model’s efficiency, which is essential for practical applica-
tions. Second, the capacity to handle short sequences en-
ables the model to leverage future information with an ac-
ceptable latency.

According to the findings presented in Tab. C, our model
exhibits robustness across varying sequence lengths. Even
when processing very short sequences (11), our model
demonstrates superior performance compared to Avatar-
Poser [3]. These results suggest that our model effectively
leverages temporal information.



Method MPJRE MPJPE MPJVE Jitter Ground Skate H-PE U-PE L-PE

Ours - Basic Loss 6.09 7.50 32.53 8.98 3.66 0.35 3.11 3.93 13.76
+ Hand Alignment 5.87 6.90 29.07 6.88 3.73 0.33 1.58 3.51 12.85

+ Velocity-Short 5.86 6.83 25.80 4.38 3.55 0.27 1.68 3.57 12.53
+ Velocity-Long 5.81 6.67 24.48 4.35 3.39 0.23 1.61 3.47 12.27

+ Foot Contact 5.81 6.74 24.25 4.22 3.22 0.22 1.60 3.56 12.32
+ Penetration 5.85 6.80 23.34 3.87 2.65 0.20 1.69 3.50 12.58

+ Foot Height 5.86 6.60 23.57 4.10 2.46 0.21 1.69 3.52 12.12

+ Hand 5.87 6.90 29.07 6.88 3.73 0.33 1.58 3.51 12.85
+ Motion 5.73 6.91 22.42 2.97 4.35 0.17 2.36 3.55 12.80
+ Physical 5.99 8.30 33.24 8.54 2.63 0.31 5.12 4.61 14.75
+ (Hand + Motion) 5.81 6.74 24.25 4.22 3.22 0.22 1.60 3.56 12.32
+ (Hand + Physical) 6.06 7.55 27.29 5.20 2.49 0.28 1.22 3.55 14.54
+ (Motion + Physical) 5.90 7.18 22.93 3.26 2.43 0.17 2.41 3.73 13.22
+ (Hand + Motion + Physical) 5.86 6.60 23.57 4.10 2.46 0.21 1.69 3.52 12.12

Table B. Performance comparisons between our proposed method with different loss functions. The different background color is used for
indicating the category of the loss. Green denotes hand alignment loss; purple denotes motion loss; and blue denotes physical loss.

Method Length MPJRE MPJPE MPJVE Jitter Ground Skate H-PE U-PE L-PE

AvatarPoser [3] 41 3.21 4.18 29.40 - - - - - -

Ours 11 3.19 3.76 24.67 11.39 3.37 0.20 1.31 1.84 7.13
Ours 21 3.05 3.52 21.69 9.17 3.31 0.15 1.25 1.73 6.65
Ours 41 2.90 3.35 20.79 8.39 3.30 0.13 1.24 1.72 6.20

Table C. Performance comparisons between our proposed method with different input sequence lengths.
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