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A. Quantitative study of equivariant error
In Figure 1, we qualitatively show that the state-of-the-

art depth predictor, MiDaS-v3.0 DPT-Large [6], possess in-
sufficient equivariance to cropping transform. Here, we il-
lustrate the same problem in a quantitative manner. From
the input image in Figure 1, we generate 5,000 random pairs
of crops with scale variation 0.85-1 and aspect ratio varia-
tion 3/4-4/3. Note the scale variation is deliberately chosen
not to be drastic. We resize them and pass all of them to the
pre-trained network to get 5,000 depth map predictions. Af-
ter that, we compute the AbsRel (absolute relative error of
depth, averaged over pixels) between the overlapped region
of the pairs of predictions (using one as the target), and call
this number eqerrdepth(f, t1, t2). See the following equa-
tion. Here, f is the depth predictor, t1, t2 represent a pair of
randomly sampled crop transforms.

eqerrdepth(f, t1, t2) = AbsRel(t−1
1 ◦f◦t1(x), t−1

2 ◦f◦t2(x)).
This number essentially measures the degree of varia-

tion caused by random cropping. A perfectly equivariant
predictor will have eqerrdepth = 0 for any crop transforms
t1, t2. In Figure A.1, we draw the distribution of the 5,000
eqerrdepth’s in a box plot, and compare to the AbsRel be-
tween the prediction and the ground truth (red line), for both
the model before and after our equivariant fine-tuning.

From the left part of Figure A.1, we observe that the vari-
ation caused by random cropping (the box plot) is very large
compared to the AbsRel to ground truth. The mean of vari-
ation is almost 6%. The largest error can go beyond 10%,
whereas the error against ground truth is just 13.6%. The
right part shows the same quantities after our equivariant
fine-tuning. We observe that the the variation caused by
cropping is much smaller now, while the accuracy with re-
spect to ground truth also improves.

B. Additional results
Using ImageNet supervised and dense contrastive learn-
ing pre-trained ResNets as initialization. The main pa-
per Table 1 shows supervised Taskonomy [11] results with
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Figure A.1. Box plots of variations caused by random cropping,
before and after our unsupervised equivariant finetuning, for the
example picture in Figure 1 of the main paper. Red lines show the
error against ground truth. The model is pre-trained MiDaS-v3.0
DPT-Large [6]. Equivariant fine-tuning shrinks the variation by
random cropping considerably.

the UNet architecture defined in [10]. Here, we consider
ResNet-50 [4] based encoder-decoder architecture defined
in [11] for depth prediction. This architecture uses the
ResNet-50 backbone as encoder to obtain a 2048x8x8 fea-
ture map for 3x256x256 RGB input, then uses a 10-layer
convolutional decoder (with transposed convolutions in last
5 layers) to decode a 256x256 full-sized output. We put our
equivariance loss (EqLoss) with K=3 on the second to last
layer.

With ResNet as encoder, we have the possibility to ini-
tialize our training with pre-trained models. We examine
ImageNet supervised classification pretrained from torchvi-
sion [5] and PixelPro [9] ImageNet-pretrained model. The
reason to study pixel-wise dense contrastive learning pre-
trained models such as DenseCL [8] and PixelPro (Pix-
Pro) [9], is that, (1) they are pre-trained with dense cor-
respondence between two random crops – the idea is sim-
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Table B.1. ResNet-50 results on Taskonomy Depth-ZBuffer [11]
with random, ImageNet sup., and PixelPro [9] initializations.
‘+EqLoss’ rows are adding our equivariant loss. δ > 1.25 and
AbsRel are validation error metrics (lower the more accurate).
‘EqLoss’ column is the validation equivariant loss (lower the more
equivariant). Other experiment settings are the same as Table 1 in
the main paper.

Pretrain +EqLoss δ>1.25 (%)↓ AbsRel (%)↓ EqLoss↓

Random init. 31.6 21.0 0.485
Random init. ✓ 30.3 20.3 0.349

ImageNet sup. 24.7 17.6 0.403
ImageNet sup. ✓ 24.6 17.5 0.358

PixelPro [9] 22.8 17.0 0.514
PixelPro ✓ 22.7 16.7 0.463

Table B.2. Compare the K=2 pixel-wise dense contrastive loss
variant and the K=3 variant in our main results.

Dense CL (K=2) Our EqLoss (K=3)

Depth: δ>1.25 (%)↓ 25.3 25.0
Normal: Ang error ◦↓ 6.53 6.47

ilar to ours, therefore may achieve higher equivariance to
cropping; (2) better suited for downstream dense prediction
tasks than image-level pretrained models. We are curious
if initializing from these feature stacks would alleviate the
equivariance problem in depth predictors.

Table B.1 lists the results. We can make several obser-
vations: (1) Initializing from PixelPro is better than from
ImageNet sup., which is in turn better than random init. (2)
PixelPro initialization does not completely resolve the non-
equivariance issue, as the EqLoss of the final depth predic-
tor is still high, which means there is still inconsistency be-
tween different crops of the same images. (3) Regardless
of initialization, adding our EqLoss technique improves the
final accuracy and equivariance. The improvement is larger
for random init than others. The equivariance for PixelPro
is improved as well, measured by lower validation EqLoss.
(4) Our method generalizes to ResNet architecture, in addi-
tion to the UNet (Tables 1,2) and Dense Prediction Trans-
former (Table 3, [6]) architectures in the main paper.

Using dense CL loss during depth/normal network
training. When K=2, our equivariant loss reduces to a
type of pixel-wise dense contrastive loss, while our final re-
sults use K=3. Pixel-wise dense contrastive methods such
as DenseCL [8] and PixelPro [9] appear in self-supervised
learning literature. They are relevant to our paper because
the idea is also to learn equivariant rather than invariant
representations in contrastive learning. Pixel-level con-
trastive learning have shown to improve upon image-level
contrastive learning [1,3] when transferring to detection and
segmentation downstream tasks. However, they have not

Table B.3. Compare imposing equivariant loss in label space and
feature space in supervised Taskonomy [11] settings.

L: Label Space L-1: Feature Space

Depth: δ>1.25 (%)↓ 25.7 25.0
Normal: Ang error ◦↓ 6.54 6.47

been applied to state-of-the-art depth and normal predic-
tors to the best of our knowledge. Figure 4 includes this
comparison for depth prediction. In Table B.2, we show
that result again and supplement the surface normal result.
In both tasks, the K=3 variant is better than the pixel-wise
dense contrastive loss variant, under the same wall-clock
time budget. Regardless of the variants, our main point is
that equivariance is missing from current depth and normal
predictors and the equivariant regularization technique im-
proves the performance of them by increasing equivariance.

Comparison of label and feature space equivariant regu-
larization. We show additional surface normal prediction
result for the comparison of loss layer in Table B.3 to sup-
plement Table 6. We find applying our EqLoss on feature
space is also better than label space for surface normal.

C. Additional details
Cosine weighting window. In Section 5.1, we mention
the use of a weighting window with smooth edges when
computing the equivariant average to suppress the boundary
artifacts. The motivation is that the boundary predictions
(of depths, for example) may not be accurate because the
input may not contain enough context for those pixels. It
is beneficial to down-weight them in averaging. Figure C.1
shows the illustration of the actual weighting window used
in our experiments. The smooth edges are generated from a
smooth-changing cosine function. The average operation in
Eq. 1 will become a weighted average.

Figure C.1. Cosine window weighting map when computing the
output average by Eq. 1. The brighter pixels mean weights close
to 1, and the darker pixels mean weights close to 0. The edge
transition follows a cosine function. The output map of each crop
is weighted by this map. The boundary outputs will contribute less
to the average to avoid artifacts.



Linear predictor and stop gradient. Inspired by con-
trastive learning with predictor [2], we compared equivari-
ant loss with or without a predictor function between the
individual crop outputs and the average output. The intu-
ition is that the predictor and stop gradient technique pre-
vents the network from learning a collapsed constant repre-
sentation. We found that training with a predictor is usually
more stable and better-performing. In one experiment, the
validation L1 loss improved from 5.61e-2 to 5.49e-2. Our
predictor is a linear layer without bias terms, initialized to
be the identity function, predicting from each crop output
to the average output. The stop gradient is on the average
output.

Applying equivariant loss to more than one layer. Ta-
ble 6 of the main paper studies the location of our equiv-
ariant loss. It is natural to consider applying the loss on
more than one layer. We attempted applying it on both L-
1 and up1. However, there seems to be no additional gain
from this: the δ > 1.25 becomes 25.3%. While we believe
there might be more potential in general, we feel applying
to multiple layers requires more effort on hyper-parameter
tuning and causes unnecessary complexity. We thus stick to
applying on only one layer for simplicity.

Special considerations for depth predictors. The pre-
trained model from [6, 7] are trained with a combination of
loss functions in the disparity space (inverse depth), and the
prediction only satisfies p ≈ α+β 1

d where p is the predicted
disparity and d is the actual depth. Following their practice,
we train with the L1 loss on the disparities (inverse depths)
instead of depths. Due to the same reason, before comput-
ing the evaluation metrics, we also follow their practice to
use least square regression, i.e., compute the best α and β,
to align the values of predicted disparity map to the ground
truth disparity map.

D. Is it just depth or normal?
Our paper focuses on state-of-the-art depth and normal

prediction models, and finds them not very equivariant to
crop transform. Does the problem only exist for depth
and normal predictors? We believe the problem is actually
quite prevalent and was previously under-explored. In many
image-to-image translation tasks where equivariance is de-
sired, the network is not explicitly trained to be equivariant
–It does not have strong preference that the output of crop-
ping should not change.

Here, we use the CycleGAN horse-to-zebra translation
[12] as yet another failure example of equivariance in dense
prediction models. Figure D.1 shows that the resulting
stripes on the zebra are sensitive to the crop locations, while
ideally the translated image should be a deterministic map-

ping of the input image contents. This problem is even more
salient if the method is used to translate a video, as in the of-
ficial gif example of CycleGAN1, where we can visually see
the unstable predictions of stripes. Therefore, we believe
our approach is broadly relevant to the field. Our equivari-
ant regularization loss can be employed as an additional loss
during training to promote equivariance.

E. More visualization

As a supplementary visualization to Figure 3 (depth and
normal) of the main paper, we provide edge detection re-
sults on Taskonomy [11] in Figure D.2. Our model with
equivariant loss is more robust to cropping.
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Figure D.1. CycleGAN fails to be equivariant in the horse-to-zebra examples, in addition to the depth and surface normal cases of the main
paper. We believe the issue of non-equivariance is quite common in image dense prediction models and has been overlooked by prior work
(besides in semantic segmentation). Our equivariant regularization approach has potential uses in these other domains.

Figure D.2. Visualization of Table 1 edge detection results of Taskonomy validation images. From left to right, the columns are images (red,
blue crops), predictions of the baseline model (without equivariant loss) and their discrepancy, predictions of our model (with equivariant
loss) and their discrepancy.
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