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1. Implementation Details

Network details. We employ a neural network containing
8 layers of MLP following OccNet [9] where each layer has
256 nodes. The neural network takes the 3-dimension co-
ordinates of a 3D query q as input and learns to predict the
unsigned distance from q to the represented shape. Sim-
ilar to CAP-UDF [13], we adopt a non-linear projection
g(x) = |x| at the end to enforce the neural network to pro-
duce positive distances.
Sampling Strategy. We sample queries around the raw
point cloud P for training our network and optimize the un-
signed distance fields. We sample t = M/N queries around
each point p, where M is the total number of queries and N
is the number of points in P . M is set to 1 million for
shapes and will be increased appropriately for large-scale
scenes. Following Neural-Pull [8] and CAP-UDF [13], a
Gaussian function N (µ, σ2) is leveraged as the distribution
to sample queries where µ = p and σ2 is the distance from
p to its 50-th nearest point in P .

2. More Visualizations

2.1. Scene Reconstruction from Depth Maps

Dataset. To further demonstrate the advantage of our
method in surface reconstruction from depth maps, we fol-
low NeuralRGB-D [2] to evaluate our method under the
BlendSwap dataset [2]. We conduct experiments under
the clean depth maps with ground truth camera poses for
both our method and baselines. To achieve the input point
clouds, we back-project the depth maps into world space
with the known camera poses and fuse them together.
Comparison. We present a visual comparison with Con-
vOcc [11], Neural-Pull [8], NeuralRGB-D [2] and Go-Surf
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Figure 1. Visual comparison on error maps of estimated normals
with or without our designed constraints on the zero level set
(ZLS-C). Lower is better for RMSE.

[12] in Fig. 2. Note that NeuralRGB-D [2] and Go-Surf [12]
require both colored images and depth maps as input for
surface reconstruction, while our method only takes depth
maps as input. The visualization shows that our method sig-
nificantly outperforms the other depth input methods and
is also comparable with the state-of-the-art RGB-D input
methods which require extra supervision from colored im-
ages. Furthermore, all the previous works fail to reconstruct
the complex geometries with open surfaces (e.g. windows)
while our method is able to represent scenes with arbitrary
topology and reveal the geometry details.
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Figure 2. Visual comparison of surface reconstruction from depth maps on the BlendSwap dataset.
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Figure 3. More visual comparisons of surface reconstruction on SRB dataset.

2.2. Ablations on Point Normal Estimation

Analysis. We further visually demonstrate the effectiveness
of our designed constraints by providing the visualization
on point normal estimation with or without our designed
constraints in Fig. 1. Since we take the gradients at the
zero level set as the estimated normals, the point normal
estimation performance can greatly represent the accuracy
and continuity of the zero level set.

As shown in Fig. 1, our proposed constraints greatly im-
prove the normal estimation performance, especially on the
complex geometries. The result demonstrates that our con-
straints lead to a more accurate and continuous zero level
set of unsigned distance fields.

2.3. Surface Reconstruction from Real Scans

We further provide a visual comparison on the real
scanned SRB dataset with more baselines, i.e. SPSR [6]

(Screened Poisson Reconstruction), IGR [4] and NDF [3]
in Fig. 3. Fig. 3 is a supplement for Fig. 6 of the sub-
mission where we compared our method with SAP [10] and
CAP-UDF [13]. SPSR requires extra point normals as input
where we leverage PCA [1] to first estimate the un-oriented
point normals and re-orient the normals with the ground
truth normal orientations of input point clouds. The superior
performance compared with more baselines further justifies
our effectiveness.

2.4. Unsupervised Scene Normal Estimation

To further demonstrate our performance on unsupervised
point normal estimation for large-scale scenes, we follow
HSurf-Net [7] to conduct experiments on the Semantic3D
dataset [5] which contains large-scale outdoor scenes in real
world. Note that the ground truth is not available for the
dataset. We show the visualization of normal estimation re-
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Figure 4. Visualization of the normal estimation results on a real-world outdoor scene on the Semantic3D dataset. “Input” indicates the
raw point cloud and “RGB” is the visualization of the point cloud with RGB colors. “Normal Estimation” is visualized by mapping our
estimated normals into RGB colors.

sults in Fig. 4, where our method can predict accurate nor-
mals for the large-scale outdoor scene in an unsupervised
way.
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