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1. Additional Related Work

Prompting in NLP. Prompt engineering derives from the
NLP field, where a textual template termed prompt is gen-
erated to narrow the domain gap between the pre-training
pre-text task and downstream tasks. In this way, the proper
usage of prompts can well adapt the pre-trained knowl-
edge to downstream tasks [11]. Except for template-based
prompting, recent works show promising results in opti-
mizing its design, e.g., a discrete prompt can be produced
by corpus-based mining [6], gradient-based search [18],
and paraphrase generation [6]. Moreover, tuning-based ap-
proaches have also been investigated to generate continu-
ous prompt [9, 8]. In addition, task-specific prompt design
can boost performance on some specific problems. As an
illustration, the chain of thought prompting improves log-
ical reasoning performance through a step-by-step analy-
sis [21, 7]. In PointCLIP V2, 3D shape knowledge is inte-
grated into the prompt to enhance consistency between vi-
sual and textual embeddings in the latent space.

Prompting for CLIP. Existing efforts prove that visual-
language models, e.g., CLIP, highly rely on prompt design
for accurate image classification [30, 29], which motivates
amounts of works investigating textual prompt design. For
example, CoOp [30] and CoCoOp [29] learn continuous
prompt for each class and dramatically improve few-shot
image classification performance. Huang et al. propose an
unsupervised prompt learning approach for vision-language
models [5]. These approaches tend to learn continuous
prompts embedded in the latent space. In contrast, other
methods generate discrete prompts with explicit semantics

via LLMs [26, 15, 13].

Automatic Prompting. The large language model
(LLM), especially the off-the-shelf GPT-3 model, has
been investigated to automatically generate prompts for
downstream tasks in natural language processing, where a
language command often serves as input to provide prior
context [13]. For example, Liu et al. adopt cloze and
question form command to cue GPT-3 for commonsense
reasoning [10]. PICa uses additional in-context examples to
pilot GPT-3 [1] to solve visual question-answering (VQA)
problems [24]. For 2D vision, CuPL [13] customizes
language commands for GPT-3 to synthesize class-specific
prompt, and the generated prompt is then used as the input
of CLIP’s textual encoder. In this paper, for the first time,
we introduce automatic prompting into 3D domains and
designs diverse language commands to generate richer
3D-specific prompt.

2. Implementation Details
Realistic Shape Projection. Following PointCLIP [27],
the input point cloud is projected into depth maps of 10
views: front, right, back, left, top, bottom, back-right, back-
left, front-right, and front-left. We set the 1st to 4th views as
oblique views (front/back-right/left), the 5th to 8th views as
orthogonal views (front, back, right, and left), and the last
two as the top and bottom views.

LLM-assisted Prompting. We design 50 different lan-
guage commands, containing 13 for caption generation, 13
for question answering, 12 for paraphrase generation, and



View Number 1 2 4 6 8 10 12

ModelNet40 53.85 58.14 60.02 59.77 60.06 64.22 63.02
ScanObjectNN 27.34 29.96 32.06 30.21 31.36 34.91 34.94

Table 1: View Numbers for Zero-shot Classification (%).
By default, the ViT-B/16 model is used.

12 for words-to-sentence. Each command triggers GPT-3
to produce 20 3D-specific prompts, and we finally obtain
around 250 (L) LLM-assisted prompts for each command
type and 1000 prompts in total for one category. We then
conduct a post-search following PointCLIP [27] to acquire
the best-performing prompt among the 1000 prompts for
each category, and feed them into CLIP’s textual encoder.

Zero-shot Part Segmentation. We adopt ViT-B/16 [17]
as the visual encoder of CLIP, which stacks 12 multi-
head self-attention (MHSA) layers. We extract the val-
ues of patches during the attention calculation at the last
MHSA layer, and leverage bilinear interpolation to upsam-
ple the value feature map to the original image size, i.e.,
224 × 224. Then, the similarity between each pixel on
the feature map and the textual feature is calculated to ob-
tain a dense alignment. We still use GPT-3 to generate
1000 3D-specific prompts for each part category, mainly in
the form of “The [PART] part of a [CLASS] in
a depth map.”, where the shape category, [CLASS],
is known during inference and serves as prior knowledge
following existing works [14, 19, 23]. After the dense
language-image alignment on different projection views,
the pixel-wise classification results are back-projected to
3D points via the 2D-3D correspondence. Specifically,
our orthogonal projection guarantees that a 3D point at
(x0, y0, z0) is back-projected from the pixel at (x0, y0). As
only partial points of a point cloud are visible in one pro-
jection view, the multi-view back projection can complete
the predictions for all points in a point cloud. For the same
point visible from different views, we linearly interpolated
the part classification logits based on the view weights.

Zero-shot 3D Object Detection. We use 3DETR-m [12]
pre-trained on ScanNet[3] as the 3D region proposal net-
work. For each test scene in ScanNet[3], we first obtain
256 class-agnostic region proposals from 3DETR-m, i.e.,
3D candidate boxes. Then, we substitute the pre-trained
MLP-based classifier of 3DETR-m with our PointCLIP V2.
Specifically, we extract the raw points within each 3D box
from the input scene and feed them into V2 for zero-shot
classification. After obtaining the classification logits using
V2, we adopt a softmax function to obtain the class proba-
bilities and integrate the prediction with the corresponding
3D box for 3D NMS post-processing in 3DETR-m.

Models RN50 RN101 ViT-B/32 ViT-B/16 RN.×4 RN.×16

ModelNet40 87.36 88.13 88.05 89.55 87.79 86.23
ScanObjectNN 50.87 47.51 51.01 55.81 50.88 48.71

Table 2: Different Visual Encoders for 16-shot Classifi-
cation (%).

View Number 1 2 4 6 8 10 12

ModelNet40 77.21 80.52 83.73 85.43 87.68 89.55 88.49
ScanObjectNN 30.33 31.89 37.64 42.37 48.76 55.81 55.68

Table 3: View Numbers for 16-shot Classification (%).

3. Additional Ablation Study

We conduct more ablation studies on ModelNet40 [22]
and ScanObjectNN [16] dataset. For the ScanObjectNN
dataset, all experiments below adopt the PB T50 RS sub-
set. In addition, the ViT-B/16 visual encoder is the default
backbone if no otherwise specified.

3.1. Ablation for Classification

Zero-shot Classification. In Table 1, we conduct an ab-
lation study to investigate the effect of the number of pro-
jected views. We try the number in {1, 2, 4, 6, 8, 10, 12}.
Even though the best performance is achieved with 10 or
12 views, we find that oblique views (1 − 4 views) lead to
better performance during the change in view numbers. In
contrast, adding orthogonal views (5 − 8 views) may have
counterproductive effects. We conjecture this results from
that most natural images are captured from oblique view
angles, which exhibit more surfaces of objects.

Few-shot Classification. 1) Different Backbones. In
Table 2, we show the impact of different encoders on 16-
shot performance. The best performance is still achieved on
the ViT-B/16 encoder. 2) View Numbers. In Table 3, we
show the effect of different view numbers on 16-shot perfor-
mance. We find that the ScanObjectNN dataset is sensitive
to the number of projection views. When only 1 or 2 views
are provided, 16-shot classification suffers a setback. As the
number of views increases, 16-shot performance improves
drastically. For example, using 4 views improves the accu-
racy by about 6% compared to using 2 views, and using 6,
8, and 10 views also show a similar boosting. This attributes
to that ScanObjectNN dataset contains more background
noises and spatial transformations, thus global knowledge
provided by more views is required.

3.2. Realistic Shape Projection

In this section, we investigate the impact of detailed con-
figurations in the shape projection pipeline.



Resolution Zero-shot Resolution Zero-shot

64× 64× 64 58.65 128× 128× 64 61.44
96× 96× 128 59.76 224× 224× 112 64.22
112× 112× 64 62.24 224× 224× 128 63.87

Table 4: Grid Resolutions for Zero-shot Classification
(%) on ModelNet40. The resolution is in the form of
H ×W ×D.

Window Size Zero-shot Window Size Zero-shot

(8, 8, 4) 62.12 (10,10,5) 64.22
(8, 8, 5) 60.82 (12, 12, 5) 61.95
(10, 10, 4) 60.37 (12, 12, 6) 62.32

Table 5: Different Densifying Window for Zero-shot
Classification (%) on ModelNet40. The window size is
in the form of (height, width, depth).

For Quantizing Step, we compare different resolutions
in Table 4. Our best result is achieved at grid size 224 ×
224× 112. We also find that at 112× 112× 64 resolution,
our performance remains robust, while the computation and
memory cost for projection is reduced by around 85%.

For Densifying Step, we compare different pooling win-
dows on zero-shot classification task in Table 5 and find
(10, 10, 5) is the best window size, which is determined by
the density of sampled points.

For Smoothing Step, we analyze the impact of Gaus-
sian kernel size and variance in Table 6 and 7, respec-
tively. We find that (5, 5, 7) is the best kernel size and
(σXY , σz) = (3, 2) is the best variance, which achieves an
adequate balance between removing artifacts and retaining
real edges.

For General 3D Learning. We apply our projection
module to general 3D classification with three baselines,
SimpleView [4], P2P [20], and I2P-MAE [28]. SimpleView
is an end-to-end 3D network trained from scratch, and the
other two conduct 3D transfer learning via pre-trained 2D
models. The results are presented in Table 8. We replace
their simple projection with ours and observe a performance
boost on the ScanObjectNN dataset, indicating our general-
ization ability.

For Outdoor Detection. Indoor and outdoor 3D detec-
tion are normally two separate research fields, due to the
entirely different 3D point distributions. The popular indoor
detectors have no public outdoor results, and vice versa.
Nonetheless, we also evaluate our scalability on the out-
door nuScenes dataset [2] in Table 10, where we adopt a

Kernel Size Zero-shot Kernel Size Zero-shot

(3, 3, 3) 61.06 (7,7,5) 64.22
(5, 5, 3) 62.76 (7, 7, 7) 61.30
(5, 5, 5) 60.37 (9, 9, 7) 62.36

Table 6: Different Smoothing Kernel Size for Zero-shot
Classification (%) on ModelNet40. The kernel size is in
the form of (height, width, depth).

Variance Zero-shot Variance Zero-shot

(1, 1) 61.71 (3,2) 64.22
(2, 1) 62.56 (3, 3) 62.44
(2, 2) 62.58 (4, 3) 63.13

Table 7: Different Gaussian Kernel Variance for Zero-
shot Classification (%) on ModelNet40. The variance is in
the form of (σXY , σZ).

SimpleView + Ours P2P + Ours I2P-MAE + Ours

79.5 80.20 85.70 85.90 87.10 88.62

Table 8: Results (%) of General 3D Tasks using our real-
istic projection.

Prompt 2D Prompt CuPL 3D Prompt

Zero-shot 59.46 45.83 64.22

Table 9: Different Prompts for Zero-shot Classification
(%) on ModelNet40.

pre-trained CenterPoint [25] for region proposals. In addi-
tion, we adopt the same strategy as in the main paper. The
improvement compared to PointCLIP indicates our gener-
alization capacity to outdoor scenarios.

Metrics NDS mAP mATE mASE mAOE mAVE mAAE

PointCLIP 0.23 0.04 0.46 0.31 0.80 1.40 0.32
CLIPoint 0.32 0.18 0.37 0.27 0.70 1.43 0.33

Table 10: Outdoor Object Detection Results on
NuScenes.

3.3. LLM-assisted 3D Prompting

Here we focus on the role of 3D prompting. We com-
pare our generated 3D-specific prompt with a general 2D
image prompt and CuPL’s prompt [13]. We also gener-
ate LLM-assisted 2D prompt via GPT-3 and adopt the lan-
guage commands used in PointCLIP V2, with deleting all
3D-related words, e.g., “depth map” and “3D model”.
We conduct a post-search to select the best LLM-assisted
2D prompt in the same way as the 3D-specific prompt. For



the CuPL prompt, we use the same way as in [13] to gen-
erate and average all prompts, but we inject shape descrip-
tions into the language commands. Table 9 shows the re-
sults of using three different prompts on zero-shot classifi-
cation. We can find that the 3D-specific prompt achieves
the best performance. Compared to the LLM-assisted 2D
prompt, the 3D-specific prompt provides more shape de-
scription; Compared to the CuPL prompt, the 3D-specific
prompt increases the diversity of syntax and semantics.

4. Visualization
In Figure 1, we give more examples of projections used

in PointCLIP and V2, as well as their corresponding atten-
tion maps. Therein, ten views of an airplane are shown.

In Figure 2, we exhibit the effects of different projection
steps of V2. We can observe that without densifying, our
shape projection produces a sparse depth map, which is sim-
ilar to PointCLIP’s projection. Besides, removing Gaussian
smoothing makes the depth map grainy and sharp, while
Gaussian blur guarantees a more natural appearance.

5. Examples of LLM-assisted 3D Prompting
5.1. Language Command

We show 20 examples of language commands in Table
11. Considering that we adopt four types of command, cap-
tion generation, question answering, paraphrase generation,
and words-to-sentence, five examples for each command
type are reported in the table.

5.2. LLM-assisted 3D Prompt

We give examples of the LLM-assisted 3D prompt for a
subset of ModelNet40 categories. We show 5 random cate-
gories and 20 prompts for each category in Table 12.



PointCLIP:

PointCLIP V2:

Figure 1: Comparison of Projections between PointCLIP and V2. The attention maps are also shown.

PointCLIP V2:

Ground Truth:

PointCLIP:

Without Smoothing:

With Densifying & Smoothing:

Without Densifying:

Figure 2: Effects of Densifying and Smoothing Steps.
The top row shows depth maps without densifying, which
are similar to PointCLIP’s projection. The middle row gives
depth maps without smoothing. The bottom row is the
shape projection used in PointCLIP V2.



Caption Generation:

"Describe a depth map of a [CLASS]:",
"People often describe a [CLASS] in this way:",
"A caption of a grayscale image of a [CLASS]:",
"Give a caption to a rough overview of a 3D model of a [CLASS]:",
"Describe and contextualize an obscure depth map of a [CLASS] 3D model:".

Question Answering:

"What does a [CLASS] look like?",
"What does a 3D model of a [CLASS] look like?",
"The model of a [CLASS], how can you describe it?",
"What does a typical [CLASS] look like in a depth map?",
"How can you identify a [CLASS] from a grayscale map?".

Paraphrase Generation:

"Explain this sentence: A rough 3D model of an inclined [CLASS].",
"Generate synonym sentences: A depth map of an inclined [CLASS] 3D model.",
"Rephrase this sentence: This is a grayscale depth map of a [CLASS].",
"Rewrite this sentence: This is a photo reflecting the height of parts of a [CLASS].",
"Rephrase this sentence: A rough 3D model of an inclined [CLASS] composed of gray obscure
balls.".

Words-to-sentence:

"Make a sentence using phrases: photo, depth, 3D, [CLASS].",
"Please make sentences with words: rough, 3D model, a [CLASS].",
"Combine phrases to a sentence: 3D model, a photo of, a [CLASS].",
"How can you combine the following words to a sentence: depth map, a [CLASS].",
"Please make a sentence with the following words: synthetic, 3D model, depth map of a
[CLASS].".

Table 11: Command Examples used to Generate 3D-specific Prompt.

"airplane":
"An obscure depth map of an airplane would show the aircraft in great detail, including
its wings, engines, and body.",
"An airplane is a large metal tube with wings that flaps to stay in the air.",
"The airplane is shown at an oblique angle, and the depth map is rather dark.",
"An obscure depth map of an airplane would show the hidden features of the airplane that
are not easily seen.",
"The feature of an obscure depth map of an airplane is that it often contains detail that
is not visible in the original image.",
"A three-dimensional (3D) model of an airplane would likely feature the plane’s wings,
fuselage, and tail, as well as any engines, to give the viewer a sense of the airplane’s
overall shape and size.",
"A depth map would show the relative depths of different parts of the airplane.",
"A depth map of an airplane would show the different levels of the aircraft, from the
cockpit to the cargo hold.",
"A depth photo of an airplane flying high in the sky.",



"The image displays a 3D model of an airplane from a lateral (side) view.",
"The lateral view of a 3D model of an airplane includes the wings and the tail.",
"The simplest way to identify an airplane using a depth map is to look for a large, dark
object that is elevated above the ground.",
"Aircraft generally appear as white or light-colored blips on a grayscale map.",
"The airplane is typically represented by a small triangle with two wings.",
"On a grayscale map, airplane symbols are small black triangles pointing in the direction
the plane is facing.",
"Airplanes typically have a long body with wings on either side.",
"A 3D model of an airplane would look like a realistic or stylized representation of an
airplane, often shown in flight or from different angles.",
"Three-dimensional models of airplanes typically show the airplane’s outer shell, wings,
and engines.",
"A depth map of an airplane would look like a two-dimensional representation, with the
different parts of the plane represented by different shades of color.",
"The cabin of a 747 Jumbo Jet looks like a long tube with rows of seats on either

side.",
"This white 3D model of an airplane is quite large, and it has intricate details.".

"bed":
"A depth map of a bed may show the various depths of the mattress, pillow, and sheets.",
"The bed is a deep, dark place where many forgotten things go to die.",
"The bed is at an oblique angle, so the depth map would be quite flat.",
"The obscure depth map of a bed may show the location of the bed in a room, as well as
the dimensions of the bed.",
"A three-dimensional model of a bed would show the bed from all sides, including the top,
bottom, and sides.",
"A bed depth map would show the measurements of a bed from the front to the back.",
"In a white and porous depth map of a bed, the bed is represented as a white surface with
a series of pores, or small holes, running across it.",
"A view of a bed from the side, showing the depth of the mattress and the height of the
headboard.",
"A bed of pillows and blankets.",
"A 3D model of an inclined bed made of gray, sphere-like objects.",
"A side view depth map of a bed may look like a three-dimensional image of a bed, with
the bed frame and mattress represented as two rectangles.",
"This sketch map shows the contours of a bed, including the mattress, pillows, and
bedding.",
"This heightmap shows the topography of a bed.",
"A topographical map of a bed, showing the elevation of the mattress and the surrounding
area.",
"A 3D model of a bed composed of gray, obscure balls, inclined at a rough angle.",
"The 3D model of the bed was created using a depth map and synthetic data.",
"A white bed would appear as a large, rectangle shape in the middle of the image with
some shading along the edges to indicate depth.",
"The white 3D model of the bed is simple, elegant, and has a clean look.",
"The model is of a traditional bedframe, with a squared headboard and footboard.",
"This 3D model of a bed is quite simple, but its clean lines and elegant curves give it a
sophisticated look.".

"guitar":
"The guitar 3D model is comprised of a series of polygons which are shaded to give the
illusion of depth.",
"Shadows stretch across the strings, casting a dark hue over the smooth curves of the
instrument.",
"The guitar is a deep, dark wood, with a black fretboard.",



"Assuming you are looking at the guitar from the front, the depth map would show
the strings protruding from the body of the guitar, the neck of the guitar, and the
headstock.",
"The 3D model of the guitar would show all of the different parts of the guitar,
including the body, neck, head, and strings.",
"The guitar’s body is shaped like a long, curving triangle.",
"One way to identify a guitar using a depth map is to look for the distinctive shape of
the body and the long, thin neck.",
"The guitar is the long, thin, dark shape in the center of the map.",
"A depth map of a guitar would show the height of the strings above the fretboard, the
depth of the body below the strings, and the distance between the strings.",
"An unclear black and white depth map of a slanted rough guitar model.",
"a map of a guitar in shades of gray that is tilted and has a lot of texture.",
"A depth map of a guitar model in shades of gray, at an oblique angle, with a rough
surface.",
"The guitar 3D model is a realistic and detailed replica of a guitar.",
"This photo is a 3D model of a guitar.",
"In the photo, there is a guitar 3D model that has been rotated so that all angles are
visible.",
"The guitar model would appear as a silvery white color, with shadows and highlights to
show the depth and dimension of the object.",
"The off-white guitar has a sleek body with a glossy finish.",
"The guitar’s depth map is varied and complex, with many different contours and depths.",
"A white 3D model of a guitar that is lying on its side on a white background.",
"The soothing, pure white 3D model of a guitar has intricate details and a smooth
finish.".

"person":
"An obscure depth map of a person 3D model would show a person in three dimensions, but
with very little detail.",
"One can imagine a depth map of a person that shows all the internal organs in different
shades of gray, with the skeleton in white.",
"A 3D model of a person would likely include features such as the person’s face, hair,
and clothing.",
"This person looks like they’re deep in thought.",
" Black and white photo of a young man with short hair, looking to the side.",
"A portrait of a person taken from a depth photo.",
"A 3D model of a human being, used for studying the human body or for creating artwork.",
"Staring straight ahead, the person’s face is in the center with their body to the
sides.",
"The lateral view of the 3D model would show the person’s side and would include their
arm, torso, and leg on that side.",
"From the perspective of looking at someone from the side, you would see their profile.",
"The depth map of a person can be identified by looking at the shadows cast by the
person.",
"You can identify a person from a grayscale map by looking at the map’s scale.",
"The map does not have enough information to identify a specific person.",
"A 3D model of a person is a computer-generated image that looks like the person.",
"The person is standing in front of a white background with their arms at their sides.",
"A depiction of a person in art is called a portrait.",
"The model of a person is an idealized representation of the physical form and appearance
of a human being.",
"A typical person has two arms, two legs, and a head.",
"An unclear black and white depth map of a slanted rough human model.",
"The image might show a realistic or cartoon-like 3D model of a person, possibly with
different colors for different parts of the body.",
"The person in the photo is a 3D model of a woman.".



"table":
"An obscure depth map of a 3D table model would show the table in great detail, but the
surrounding environment would be significantly blurrier.",
"This depth map of a table 3D model represents the table in terms of its height, width,
and depth.",
"The table model is composed of a large number of small, evenly spaced polygons.",
"The table is displayed as a wireframe model, with little detail.",
"From a bird’s eye view, the table would appear as a rectangle.",
"The table has five legs and a square top.",
"The table is brown and it has four legs.",
"The table is square.",
"The table may have a base with four legs, or it may have a pedestal base.",
"In the lateral view of the table, we can see its long, flat surface, supported by four
legs.",
"A table can be identified in a depth map by looking for a cluster of points that are
close together and roughly the same distance from the camera.",
"A coffee table typically has a rectangular or oval shape, and it is usually low to the
ground.",
"A table is a piece of furniture typically used in a dining room or kitchen to support
food and dishes.",
"The maps show the topography of a table, with different shades of gray representing
different heights.",
"The photo is of a white table with a gray surface.",
"The table is seen from above, and its surface is covered in a grid of tiny rectangles.",
"The white 3D model of a table is made of plastic and is very realistic.",
"The white 3D model of a table is sleek, simple, and stylish.",
"The synthetic 3D model was created using depth maps of various tables.".

Table 12: Examples of 3D-specific Prompt. We show five categories and 20 descriptions for each category.
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