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Abstract

The ability to predict human intent in manipulating in-
hand objects is a crucial aspect of developing intelligent
robotic systems that can effectively interact with and as-
sist humans in various tasks. Due to the non-standardized
nature of interfaces between different robots, it is non-
trivial to establish a one-to-one mapping between the in-
structions provided by the human operator on to the robot,
and vice-versa. Additionally, the round trip of informa-
tion flow in move-and-wait teleoperation strategy for micro-
instructions accumulates considerable delays in performing
basic tasks, rendering the overall objective ineffective. In
this context, predicting the human intent of teleoperation
is a prospective strategy to mitigate the effect of such de-
lays. This entails that a possible set of expected action(s) is
to be represented ahead of time. In this study, we propose
an ML-driven ensemble approach for estimating the goal
pose configuration of an object of interest held within the
end-effectors of a remotely connected robot using visual and
kinematic measurements. We evaluate our proposed system
to infer the intended action of a human operator in a real-
world robotic setup involving a haptic glove and a dexter-
ous robotic hand, on three different objects. The proposed
methodology outperforms a benchmark model in literature
utilizing 60 times lesser prediction time with substantially
better performance. We provide a comparative analysis of
intent prediction strategy using independent visual and ki-
naesthetic data and discuss its improvement when combin-
ing both the modalities.

1. Introduction

The study of teleoperated robotic systems has been wit-

nessed in literature for numerous decades [6, 3, 1]. These

studies have resulted in significant advancements in several

fields, including tele-medicine [9, 10, 11], virtual-reality

/augmented-reality [4], precise automation [7, 13], and in-

dustrial applications, [5, 2]. Achieving accurate control of a

robot situated at a remote location necessitates the conver-

sion of motion signals emanating from the human operator

onto the robot, accompanied by the provision of feedback to

the human controller for its assistive or corrective followup.

The repetitive cycle of human-centric control and coordi-

nation enables a robot to perform in-hand manipulation of

objects with a significant accuracy. The manipulation of the

object through movements across the end-effectors of the

robot requires precise control of both the motion of the end-

effectors and the applied force to avoid any potential unde-

sired outcomes. However, such a move-and-wait paradigm

entails communicational and control delays in conjunction

to human-reaction time. Hence, it is desirable to predict

the desired set of actions of the human controller ahead of

time to compensate for the associated delays. Secondly, the

transformation of the high-dimensional joint motion signals

from the human fingers onto the robotic hand is not trivial.

It requires an estimation mechanism to represent the input

signals in terms of the desired action that the human intends

to perform.

This work utilizes Dexmo Haptic Glove (DHG)-driven

control of a remotely placed Allegro robotic hand (ARH).

The control signals perceived from the fingers of the hu-

man user are captured by the DHG, and the correspond-

ing joint motion signals from the DHG are transformed into

reliable joint configuration for the ARH using a transfor-
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mation/mapping mechanism (as shown in Figure 1). The

system is complex due to the dissimilarity in the kinemat-

ics of the robotic hand, the exoskeleton glove, and the

human hand. In contrast to perceive control information

from 19 odd joints in the human hand, the DHG represents

such information across its 11-degrees of freedom which

is to be realized by the ARH in 16-degrees of freedom.

Hence, the DHG under-represents the perceived informa-

tion from the human hand. However, the magnitude of

under-representation can vary across robots and utility. This

work entails analysing the information retained for achiev-

ing successful teleoperation of a robot by introducing an es-

timation mechanism to quantify the expected goal pose of

fingers of the human user, wearing the DHG, as its intent,

defined in terms of the expected rotation angle of the ob-

ject (about the viewing plane) that is held between the end-

effectors of ARH. Two modalities of measurements (visual

and kinaesthetic) are observed in this study in achieving this

objective.

Main Contributions. In this premise, the contributions

of this work are listed as follows: 1) A neural network based

mapping/transformation algorithm is synthesized for trans-

forming the kinaesthetic data encoded at the joints of DHG

onto the joints of the ARH towards a successful replica-

tion of actions from human to the robot. 2) We introduce a

prediction mechanism to estimate the trajectory of the ex-

pected human intent in terms of the rotation of an object

of interest within the grasp of the robot, using an attention-

based convolutional encoder network on kinasesthetic and

visual measurements discretely. 3) We introduce a stacking-

based ensemble to predict the human intent using combined

modalities of visual cues and kinaesthetic measurements,

and provide a comparative analysis of the prediction mech-

anism.

1.1. Methodology

We define a scenario for performing in-hand operation

of three real-world objects (shown in Figure 2) and predict

the human intent template in terms of the angle of rotation

of the object ahead of time to compensate for the delays

that occur because of the communication/control latency

in bilateral teleoperation. We leverage visual and kinaes-

thetic feedback to report their performance on the estima-

tion/prediction mechanism.

1.2. Grasping/Mapping Algorithm

The input (QDHG ∈ R11) to the mapping mechanism

(as shown in Figure 1) is scaled vector of 11-DOF (de-

grees of freedom) kinaesthetic measurements from the en-

coding joints of DHG represented as QDHG. The output is

a scaled vector of 16-DOF joint configuration to be actuated

by the ARH, represented as QARH . The mapping mecha-

nism demonstrated is a fully-connected neural network to
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Figure 1. Showing the neural network based mapping mechanism

for transforming joint configuration of DHG to ARH with respec-

tive axes of rotation.

Figure 2. a) Cuboidal b) Cylindrical c) Spherical object used in the

study.

perform the transformation, τ : R11 → R16, where the

intrinsic architectural structure of this model is shown in

Figure 1. The motivation to leverage hidden layers each

having k nodes, k ∈ R6, to represent the embeddings of

kinaesthetic input is taken from a result from the following

observation. It was observed that the PCA-decomposition

of the encoded input, QDHG across the objects of interest

in the study yields a knee-point of the magnitude of variance

in principal components around 6th principal component

(as shown in Figure 3). This is analogous to the fact that

the state configuration of unrestrained rigid bodies could

be represented exactly in 6-DOF [12]. Taking this obser-

vation, it was seen that 6 dimensions can represent almost

98% of the variance in the principal components. Hence,

leading to the choice of hidden layer dimensions. The data

to train this network was curated in the form of a pairwise

QDHG → QARH joint state configurations upon manipu-

lating the objects of interest (shown in Figure 2) and per-

form random joint angle configurations on both the devices

simultaneously, yielding reliable pairs of ground truth for

performing this mapping. Since the robots vary in parame-

ters, various mapping schemes can emerge as a result. Here,

neural network assumes a black-box approach of this map-

ping scheme, the significant results of which are shown in

the Results section.
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Figure 3. Magnitude of variance in principal components across

dimensions of HG.

1.3. Mechanism for estimating and predicting hu-
man intent from visual cues

Based on the premise that the joint angle configurations

can represent the overall angle of rotation of the in-held ob-

ject at any arbitrary time n, this mechanism uses the relative

position of the ArUco marker with respect to the ARH, as a

determinant of the current state of the object being manipu-

lated. There exist two such markers, one placed on the ARH

and the other placed on the object of interest. The system is

calibrated offline initially. Once calibration is complete, the

expected angle of the object (about the viewing plane) is a

representative of the intent of the human (defined by goal

pose of the fingers). This is achieved by segmenting the

ArUco marker on the object and calculating its angle with

respect to the marker on the ARH, yielding the current pose

of the object at time n, as ψn. Consider a sequence of previ-

ous r pose values, as Avis = {ψn−r+1, ψn−r+2, . . . , ψn}.

This is passed to the transformer encoder block that yields a

predicted estimate of the pose (ŷvis = ψ̂n+m) based on the

distribution of trajectory Avis with a lookahead of m units.

A schematic diagram of this mechanism is shown in Fig-

ure 4. The architecture of the attention-based convolutional

encoder (labelled as Transformer encoder) is illustrated in

Figure 5.
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Figure 4. Mechanism of estimating human-intent in terms of angle

of rotation of the object taken from visual cues.

1.4. Mechanism for estimating and predicting hu-
man intent from kinaesthetic measurements

The current pose of the object can also be estimated

by the transformation of kinaesthetic measurements emerg-

ing from the joints of ARH. Due to the non-linear map-

ping of the pair QARH → ψn, we leverage a neural net-

work approach. The input to the fully connected neural

network is 16-DOF vector, QARH , parsed by ReLU ac-

tivation and mapped to the pose value ψn of the object

at an arbitrary time n. The ground truth of the current

pose of the object (while training this network) is fed using

the visual measurements (same as defined in previous sec-

tion). Upon generating a vector of r pose values, Akin =
{ψn−r+1, ψn−r+2, . . . , ψn}, the transformer encoder pre-

dicts the mth pose value of the object, ŷkin = ψ̂n+m, simi-

lar to the scheme defined in previous section.

1.5. Hybrid Model combining the information from
visual and kinaesthetic measurements

A stacking based ensemble approach defined in Al-

gorithm 1 to utilize the predictions generated from both

modalities. The individual pre-trained modes are used to

generate a vector of two units (signifying the individual pre-

diction), as [ŷvis, ŷkin. Then, a single layer perceptron net-

work is trained on this input as Y = αŷvis + βŷkin, where

α and β represent the weights of the ensemble model that

are trained using a suitable learning algorithm. The Y value

thus obtained is the predicted value of the current pose of

the object when combining both the modalities.

2. Results and Discussion

2.1. Results from mapping mechanism

The results from the mapping mechanism has yielded

significant accuracy in replicating the pose generated from

DHG to ARH with a root mean squared error of 0.0872665-

0.0933 radians across all joints. The results are shown in

Figure 7.

2.2. Results from modelling visual cues indepen-
dently

Here we discuss the results obtained from marker-driven

visual cues, the angle of the ArUco marker is taken relative

to the marker on the ARH. By noting the any two corner co-

ordinates of the marker, the angle between the vectors ob-

tained using the two points on each marker is synthesized

into a sequence for learning the prediction. The initial lag

of angle due to calibration is removed already. The trans-

former encoder that trains on such sequences, is set with the

hyperparameters mentioned in Table 1. The training data is

sequenced with r = 10 units (depicting the window size for

input), and m = 1 (depicting the lookahead) with a stride
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Figure 5. Transformer encoder for prediction of human intent from previous r pose values.
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Figure 6. Kinaesthetic measurement mechanism.

Input: Joint state configuration of ARH

(i.e.,QARH ); Joint state configuration of

DHG (i.e.,QDHG)

Output: Predicted value of the human-intent Y
representing the predicted angle of rotation

of the object.

1 n ← currentFrameNumber � a constant
2 m ← 1 � Lookahead
3

4 while True do
5 ŷvis =

Vision Measurements Mechanism(QARH , n,m)

6 ŷkin =
Kinaesthetic Measurements Mechanism(QDHG, n,m)

7 Y = αŷvis + βŷkin
8 n ← n+ 1
9 return Y

10 end

Algorithm 1: Stacking ensemble for generating predic-

tion(s) of human intent using vision and kinaesthetic

measurements.

of 1 using sliding window. The data is split into train, test

and validation in the ratio of 0.8:0.1:0.1. Hence, using this

visual input modality, we report the MSE training loss, val-

idation loss, and test loss of 0.0026, 0.0021, respectively.

Hyperparameter Space
Learning Rate 0.0001

Loss MSE

Batch-size 16

Scaling Min-Max Normalization

Epochs 200

Optimizer Adam

Table 1. Hyperparameters set during training the transformer en-

coder model.

2.3. Results from modelling kinaesthetic cues inde-
pendently

Here we discuss the effect on performance of training

when using kinaesthetic data as input to the transformer

encoder. The output from the kinaesthetic measurement

mechanism is used to generate the current pose of the ob-

ject, a sequence of which is parsed by the transformer en-

coder to generate a prediction with m = 1 lookahead. Sim-

ilar to the process in previous experiment, the hyperparam-

eters of the encoder network are set according to Table 1.

The value of r = 20 was empirically chosen to generate the

sequence at any given time n, using sliding window, with

stride=1. Such a stride was chosen to reduce the informa-

tion while training the network. The data is split into train,

test and validation in the ratio of 0.8:0.1:0.1. The training

loss, and validation loss, was observed as 0.0027, 0.001, re-

spectively.

2.4. Results from hybrid mechanism

From the previous experiments we realize that the val-

idation error in training the encoder on kinaesthetic inputs

is lesser than using visual modality independently. This re-

sult is observed due to the variability of detecting the cor-

ners of ArUco which may be susceptible to noise/artifacts

that arise in sensing the environment. It is also necessary

to mention that kinaesthetic measurements are sensitive to

physical conditions of the environment. Hence, in order to

leverage the utility of both modalities, an ensemble was uti-
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Figure 7. Visualization of mapping mechanism while performing different poses from DHG to ARH.

lized in this experiment to observe any prospective increase

in performance. We report an improvement when combin-

ing the modalities of input. The trajectory of true and pre-

dicted output value of human intent is shown in Figure 8.

Table 2 illustrates the test mean squared error (MSE) and

test mean average error (MAE) on individual models and

the improvement on the stacking model.

Analysis of delays. The system was experimentally

tested on a real-world 4G network. It was observed mo-

tion in the object at the ARH lags in time with respect to the

motion at the DHG owing to the delay in processing, con-

trol, and communication. However, the introduction of a

prediction network helps reduce the impact of these delays.

There is a trade-off between the value of parameter m and

the observed error. The value of m is used to compensate

for an equal number of round-trip delay components, but

this leads to an increase in error as the value of the looka-

head window (m) increases. The latency of the channel

depends on network dynamics, which is not the focus of

this study. However, it is important to understand how the

prediction mechanism helps mitigate the observed delays.

Therefore, the proposed system takes around 11.1 − 32.25
ms to compensate for an approximately 76.25− 100 ms de-

lay (excluding human reaction time) that would otherwise

occur in a single round trip of control-feedback signals.

Further comparison. We compare our proposed

methodology with benchmark work [8] in the literature,

where a vision dataset of 11200 samples is modelled us-

Model Test MSE Test MAE

Kinaesthetic 0.001619 0.0144

Visual 0.006 0.02

Ensemble Model 0.000937 0.008641

Table 2. Showing comparative analysis of the stacking ensem-

ble, visual measurements model, and kinaesthetic measurements

model trained from visual and kinaesthetic cues.

ing Markov Decision Processes, to classify the data across

8 different motion types with a true positive rate of 93.5%

in ∼ 625ms. While as, the proposed approach in our work

is generalized as the predicted output is a continuous value

instead of categories. It predicts the intent of motion with

an MSE of 0.0009 in 10.1− 35.5ms timeframe.

Ablation Study. We proceed to vary the length of the

lookahead window m to observe the performance of the

prediction mechanism on the actual data. On a novel sam-

ple taken from a similar distribution, the results are shown

in Figures 8. It is observed that the error in prediction in-

creases as the lookahead increases, which signifies an intu-

itively expected result.

Visualized Results. We analyze the visualization of the

prediction mechanism on the aforementioned objects of in-

terest, the same is illustrated in Figure 9.
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Figure 8. Showing the trajectory of true motion of the object and the predicted intent of the motion of the object using various lookahead

values.

3. Conclusion

This paper summarizes the contribution of utilizing vi-
sual, kinaesthetic modalities and their hybrid version of es-
timating the human intent in manipulating various objects
of interest. We propose an ensemble stacking approach to
discuss the improvements made in accurate predictions of
the human intent template that can help in mitigating the
delays occurring in bilateral move-and-wait strategy of tele-
operation. A total MSE of 0.0016 is observed while using
kinaesthetic data individually while we observe that a to-
tal MSE of 0.006 is observed when using visual data inde-
pendently. A considerable performance in accuracy is ob-
served by realizing lesser error when combining both the
modalities. Our proposed system outperforms benchmark
approach in the literature in the respect of modelling the
prediction of human intent as a regression problem with sig-
nificant results.
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