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Abstract

The rehabilitation process for hip replacement surgery
relies on supervised exercises recommended by medical
authorities. However, limitations in therapist availabil-
ity, budget constraints, and evaluation inconsistencies have
prompted the need for a more accessible and user-friendly
solution. In this paper, we propose a scalable, user-friendly,
and cost-effective vision-based human action recognition
system utilizing machine learning (ML) and 2D cameras.
By providing personalized monitoring, our solution aims to
address the limitations of traditional rehabilitation meth-
ods and support productive home-based healthcare. A key
component of our work involves the use of deep learning
(DL) method to align time-series exercise data, which en-
sures accurate analysis and assessment. Additionally, we
introduce the concept of a Golden Feature, which plays a
critical role in the framework by providing valuable insights
into exercise execution and contributing to overall system
accuracy. Furthermore, our framework goes beyond pre-
dicting exercise scores and focuses on predicting comments
for partially successful cases using a multi-label ML model.
This allows for a deeper understanding of the clinical rea-
sons behind partial success, such as the patient’s physical
condition and their execution of the exercise. By identifying
and analyzing these factors, our framework provides mean-
ingful feedback and guidance to support effective rehabil-
itation. When evaluated on multiple exercises, the system
achieved an accuracy level of 80% or higher on predicting
execution score, and 72% on predicting the execution feed-
back.

1. Introduction

Human action recognition (HAR) in the healthcare sec-

tor, and particularly in diagnostics and rehabilitation of pa-

tients has gained significant attention in recent years due

to the potential to facilitate more effective and efficient re-

habilitation interventions [7, 12, 17, 29, 31]. The ability

to accurately identify and assess performance of a patient’s

physical motion can provide valuable insights into their re-

covery progress, which in turn can guide personalized treat-

ment plans. Furthermore automation of HAR can promote

remote and home based medical treatment. The use of HAR

in rehabilitation in remote settings, can improve patient en-

gagement, as well as provide clinicians with objective mea-

sures of progress.

In this study, we focus on rehabilitation following hip

replacement surgery, but the approach easily generalizes to

any rehabilitation program. Currently, rehabilitation fol-

lowing hip replacement surgery involves a set of exercises

of increasing difficulty that are supervised and tuned to the

patient’s abilities by a medical professional (occupational

therapist, physiotherapist etc). The rehabilitation program

is often initiated at the hospital following surgery and is

continued at a rehabilitation facility, hospital day visits, or

the patient’s home. Rehabilitation in the hospital is costly,

leaning heavily on the limited medical professional’s re-

sources, and thus patients are typically discharged soon af-

ter surgery. Unfortunately, rehabilitation in the home setting

is mostly unsupervised with intermittent monitoring and

guidance by the medical professional. This results in im-

precise assessment of the patient’s’ performance and results

in a less efficient and less adaptive treatment. These limi-

tations underscore the need for more effective and efficient

methods of rehabilitation in a home setting, which automat-

ically assess performance, provide feedback, and adapt the

program to the patient’s performance. Such a system has
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the potential to improve patient recovery and reduce costs

while minimizing the need for professional resources.

In this paper we introduce a novel framework that uti-

lizes 2D cameras and machine learning (ML), to automati-

cally assess the performance of rehabilitation exercises fol-

lowing hip replacement surgery, enabling accessible home-

based rehabilitation. Our framework incorporates an inno-

vative deep learning (DL) method for aligning time-series

data, ensuring accurate synchronization of exercise signals.

Additionally, we introduce the concept of a Golden Feature,

which aids in signal alignment, iteration splitting, and simi-

larity comparison between test and aligned training data. By

leveraging these techniques, our framework identifies key

intervals within the exercise routine, allowing for a more

precise and effective assessment of exercise performance.

Furthermore, in addition to performance scores, our frame-

work provides feedback regarding specific aspects of the

execution that may require improvement, offering valuable

insights to enhance the rehabilitation process.

2. Related work
Automated rehabilitation systems have gained signifi-

cant attention in recent years due to their potential to im-

prove the effectiveness and accessibility of rehabilitation

programs. Tracking the activity of a patient can be accom-

plished through the utilization of cameras or wearable body

sensors [1]. Several reviews and surveys have covered the

diverse methodologies employed in HAR [16]. These ap-

proaches can be categorized into founr primary categories:

radio frequency-based [34], sensor-based [33], wearable

device-based [5], and vision-based [14] methods.

In the domain of vision-based HAR, a notable work [20]

proposes an integrated framework for fine-grained human

action quality assessment, combining category classifi-

cation and regression-based evaluation running on RGB

videos. Local motion patterns of body joint-based fea-

ture representation are extracted for action classification,

and a class-specific learning algorithm is used for evalu-

ation. However, this approach suffers from several chal-

lenges: firstly, the segmentation of long videos is consid-

ered without extensive research on segment synchroniza-

tion. The method is more suitable for assessing well-

segmented action instances. Secondly, when complex ac-

tivities are present in videos with long durations, the quality

score is significantly affected. Future studies are needed

to address semantic segmentation and alignment methods

to enhance the practical application of the proposed frame-

work. An exercise recognition method based on RGB-D

human skeleton models using an Asus Xtion camera was

proposed in [18]. Several works in the field of HAR have

utilized the Microsoft Kinect RGB-D camera, which com-

bines an RGB camera with an infrared (IR) camera to de-

velop HAR systems. For instance, [13] proposed A-MAL,

an automatic motion evaluation learning algorithm, which

leveraged Kinect’s capabilities to learn from correctly per-

formed motion 3D videos. Similarly, [24] utilized the

Kinect camera to automate the process of predicting fall

probability in older adults using the BBS fall assessment.

Researchers in [10] combined Kinect with three machine

learning algorithms to classify actions. They employed

Kinect to capture body joint data, which was then processed

using techniques such as K-means clustering to identify

relevant joints involved in each activity. Subsequently, a

multi-class support vector machine was employed to vali-

date the obtained postures, and a discrete hidden Markov

model was used to model each activity as a sequence of

known postures. Hybrid DL model was also developed

in [19] by incorporating CNN and Long Short-Term Mem-

ory (LSTM) for activity recognition where CNN is used

for spatial features extraction and LSTM network is utilized

for learning temporal information, also in this work Kinect

was used to extract human body joints. In the domain of

smart sensor-based systems for HAR, the authors of [36]

developed the Smart Sensor-based Rehabilitation Exercise

Recognition (SSRER) system, which utilizes a hybrid CNN

of Sensor-CNN (S-CNN) and dynamic platform (D-CNN).

Furthermore, a sensory-based DL framework was proposed

in [21] for assessing physical rehabilitation exercises. How-

ever, this research encountered certain limitations that can

be categorized into two main sets: dataset limitations and

equipment limitations. In the field of sports activities, [37]

demonstrated an application of human motion recognition

utilizing DL and smart wearable devices. Additionally,

other studies, such as [2], addressed the same problem using

smartwatches. Other methods such as in [27] used virtual

reality to enhance the rehabilitation experience for individ-

uals with Tetraplegia in home settings, while allowing su-

pervision by clinical therapists.

The current literature on vision-based HAR systems

faces a common obstacle, which is the limited availability

and usability of the technology. In previous works, joint de-

tection has typically been accomplished using 3D cameras,

which offer the advantage of depth tracking and increased

accuracy, but are less accessible and more complicated to

set up than 2D cameras. By contrast, 2D cameras, such as

those found on smartphones or webcams, are widely avail-

able and easy to use, making them a more user-friendly and

cost-effective option for tracking. Additionally, 2D-based

systems have the advantage of being able to analyze any

video recorded with a camera, while 3D-based systems are

often device-dependent (e.g. Intel RealSense or Microsoft

Kinect), limiting their versatility. In a comparative analysis

made in [23], evaluating the differences between 2D and 3D

cameras for HAR, it was demonstrated that extracting joint

positions from standard resolution 2D videos can provide

equally informative features as those obtained from depth
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cameras like Kinect. The study showed that 2D joint posi-

tions can be as informative as their 3D counterparts, chal-

lenging the notion that depth information is essential for ac-

curate joint extraction and activity recognition. Our pro-

posed solution will leverage the simplicity and accessibility

of 2D camera technology to provide a highly available, low-

cost, and user-friendly solution for tracking patient activity.

3. Dataset
For this study, a dataset was collected at the occupa-

tional therapy unit at a major medical center consisting of

35 patients recovering from hip replacement surgery and 7

healthy individuals. The ages of the participants varied from

50 to 85 years, with the average age being 68.6 years. Out of

these, there were 30 females and 12 males. Each participant

performed a total of 24 exercises, with each exercise con-

sisting of three or more repetitions of a well-defined task.

Participants’ performance on the exercises was assessed by

occupational therapists who are co-authors of this paper.

Performance scores were on a three-level scoring system:

0 - an unsuccessful attempt to perform the exercise, 1 - par-

tial success, and 2 - successful execution. When patients

receive a partial success score, additional comments were

also recorded (e.g. compensatory movement, pain, fatigue

etc). All the executions were recorded using two cameras:

a frontal view camera and a side view camera. The scores

assigned by the occupational therapists served as labels for

training the ML models. The dataset focused on two daily

functional tasks: (1) moving to the bed and lying in it, and

(2) wearing pants. Each task contains several sub-tasks that

mimic real-life activities. For instance, task (1) involves

raising the legs onto the bed to assume a lying position and

rolling from lying on the side to lying on the back. For task

(2) the sub-tasks included, bending towards the floor, rais-

ing the leg in the air, and threading a ring onto the leg. By

incorporating these functional tasks and their corresponding

sub-tasks, the dataset captures essential movements and ac-

tions that individuals encounter in their daily lives. The in-

clusion of such tasks ensures the relevance and practicality

of the exercises, enabling the proposed framework to pro-

vide targeted guidance and assessment for activities that di-

rectly impact daily functioning. 1

4. An Automated System for monitoring Post
Hip Replacement Rehabilitation Exercises

We propose an automated system that utilizes ML tech-

niques and leverages the extraction of body joints from 2D

videos. The system employs features derived from the ex-

tracted joints to assess the performance of rehabilitation

exercises, predict performance scores as well as providing

1This study complies with the Declaration of Helsinki under the hospi-

tal’s ethics committee approval (0148-20-NHR).

Figure 1: Overview of the proposed framework.

feedback when performance receives a score of 1. The ma-

jor components of the system include (see Figure 1):

• Alignment of the exercise signals

• Feature extraction

• Training a ML model to predict performance scores of

exercises

• Training a ML model to predict the feedback when ex-

ercise performance is poor (score of 1).

4.1. Signal Alignment

An important aspect of exercise assessments is the vari-

ability in performance (even when correctly performed) be-

tween individuals. We address this challenge by aligning

the exercise signals across subjects. Several approaches

have been proposed for alignment of time-series signals in-

cluding various Time-warping methods such as DTW [26],

DBA [28], and SoftDTW [6]. While these methods have

been widely used, they exhibit certain limitations such

as difficulties in generalization, handling multi-classes,

and computational complexity. To overcome these limi-

tations, we use Diffeomorphic Temporal Alignment Nets

(DTAN) [30] that can effectively handle the non-linearities

and variability present in signals extracted from exercises

performed by subjects. Additionally, DTAN overcomes the

challenges of generalization, making it suitable for aligning

signals from diverse exercise tasks and individuals. To val-

idate the superiority of DTAN, we conducted a comparison

with DTW [11] on our data. Results show that DTAN out-

performs DTW in terms of alignment accuracy and robust-

ness. Specifically, the mean standard deviation std(Vmean)
using DTW was 8.31 whereas using DTAN it reduced to

6.12 (see Figure 2).

1870



Figure 2: Example of signal alignment: (a) 81 misaligned

signals. (b) Average misaligned signal. (c) Signals follow-

ing DTW alignment. (d) Average signal following DTW

alignment. (e) Signals following DTAN alignment. (f) Av-

erage signal following DTAN alignment. Shaded areas in

b,d,f indicate to ± 1 STD at each time point.

DTAN is a DL based system that aligns time-series en-

sembles in an input-dependent manner (see Figure 2f). A

nonlinear misaligned ensemble can be described as:

Ui = (Vi ◦Wi), (1)

where Ui, i = 1 . . . N represents a set of N time-series sig-

nals . Vi represents the ith aligned signal and Wi represents

the ith warp. Thus, Wi is the warping that when applied to

Vi yields the misaligned signal Ui. Given an ensemble of

input signals Ui, DTAN computes the mean aligned signal

Vmean defined as the signal that minimizes:

N∑
i=1

‖Vi − Vmean‖22. (2)

DTAN also provides the std of Vmean at each sample point:

std(Vmean) =

√√√√ N∑
i=1

(Vi −Vmean)2. (3)

Additionally, DTAN also outputs the warpings Wi which

are Continuous Piecewise-Affine based (CPAB) diffeomor-

phisms as proposed in [8, 9], and are thus invertable con-

tinuous piecewise-affine transformations that are expressive

and efficient. During inference, given a new signal U and

the mean signal Vmean, DTAN aligns U by minimizing the

following over W :

‖V − Vmean‖22 where U = (V ◦W ). (4)

DTAN outputs the aligned signal V , as well as the transfor-

mation W associated with U .

In our study, we use DTAN to align exercise signals.

As described below (Section 4.2), a specific time varying

feature termed the Golden Feature, is chosen as the exercise

signal. This feature will exhibit significant changes over

time while maintaining a relatively smooth and accurate

trend, free from noise. During training, correctly performed

exercise signals are aligned forming a single representative

signal Vmean. At test time the system attempts to align a

new exercise signal U with the representative signal. The

alignment using DTAN is as follows:

Pre-processing of the data for signal alignment:

1. Correctly performed exercise samples are selected

from the database (received a score of 2 by the occu-

pational therapist).

2. Since the exercise includes several repetitions, and the

alignment is applied to a single repetition of the golden

feature, the signal is split into repetitions. Smoothing

of the signal is applied followed by peak detection, to

identify the repetitions. Figure 3 shows the steps in-

volved in the splitting process.

3. To normalize the varying number of frames across dif-

ferent subjects and different repetitions, the signal is

interpolated to equate the number of frames.

Alignment iterations:

4. DTAN is trained on the pre-processed golden feature

signals (Figure 2a). The “mean” signal representing

the exercise is obtained (Figure 2f).

5. Remove samples that, after warping, deviate signifi-

cantly from the mean aligned signal, and retrain DTAN

on the remaining samples. (Figure 2e). This improves

the DTAN alignment and refines the accuracy of the

mean signal. Compare Figure 2b and 2f.

4.2. Feature Extraction

In order to train a ML model to predict the performance

score of an exercise, a vector of features must be gener-

ated per sample. The features include numerous spatio-

temporal characteristics of the motion performed by the

subject. Subjects were tracked in the video streams using

DL based trackers (e.g. MediaPipe (MP) [22]). and the

spatio-temporal features were extracted from the tracked

skeletal joints. Examples of relevant features may include

average speed of joint motion, maximal height from floor,

minimal joint angle etc. (see Figure 4).

Additionally, a single feature termed the Golden Feature,

is chosen for each exercise, on which the alignment pro-

cess is implemented. The Golden Feature is a characteristic
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time-dependent feature of the exercise that defines the time

course of the exercise across subjects. Examples of golden

features are the distance between the ankle and the bed, or

the distance between the hand and the ankle (see example in

Figure 4). The time-dependent golden feature serves as the

exercise signal Ui, in the alignment process (Section 4.1).

Mapping Time Interval Features
In selecting the feature vector for training and testing the

ML models, certain features may only be relevant during

specific segments of the movement rather than over the en-

tire exercise duration. For example, knee angle is only rel-

evant when the patient’s leg reaches the height of the bed,

speed of motion is only relevant in the forward stretch of the

arms and not on the return. Determining specific segments

in each individual’s motion path is very challenging due to

the variability between subjects. To address this, we rely on

the aligned DTAN mean signal, of the exercise: Important

time-points can be marked in the exercise’s mean signal V ,

representing relevant time-intervals. For example the time

points when the ankle begins ascending from the floor (in-

(a)

(b)

(c)

Figure 3: Splitting the exercise signal into separate itera-

tions. (a) Smooth the given signal. (b) Identify local min

and local max points. (c) Split the full signal into iterations

based on the min/max from (b).

terval starting point) and when the ankle reaches the bed (in-

terval end point). (red dots on the black plot in Figure 5b).

These time points, marked once in the mean-signal V , are

projected onto each aligned exercise signal Vi (green plot in

Figure 5b) and then back projected to the original exercise

signal Ui using the inverse of the warping transform Wi as-

sociated with the signal (blue plot in Figure 5b) (See also

Section 4.1). Thus, the required time intervals are deter-

mined on the original signals and time dependent features

can be extracted in the original signal’s time units.

4.3. ML Model for Exercise Score Prediction

We trained ML models to assess the exercise perfor-

mance and predict the score as assigned by the occupational

therapist. We used Random forest classifiers [15] as its use

of bootstrapping enables working on small datasets. Ad-

ditionally, the random forest classifier allows feature rank-

ing [3, 4] in which the predictive power of features can be

assessed and used to tune the model. In all models, the num-

ber of trees was set to 100, and Gini Impurity measure [25]

was used as splitting criterion, with minimum sample num-

ber of 2. Due to the unbalanced data (fewer low-scoring

samples), balanced class weights were used. Model testing

was performed on the patient dataset using a Leave One Out

(LOO) approach [25].

4.4. ML Model for Feedback Prediction

When subjects are awarded a score of 1 on an exercise,

informative feedback is also provided as one or more com-

ments from a predefined list of possible feedbacks (for ex-

ample: compensatory movement, pain, fatigue etc).

To automatically provide performance feedback for ex-

ercises receiving a score of 1, we employ a multi-label ML

classification model [32, 35]. A separate Random Forest

classifier is trained to predict each possible feedback re-

sponse from the subjects spatio-temporal exercise signal

Figure 4: Example of exercise features. Left: Vertical dis-

tance of ankle joint from hip joint in the exercise requiring

raising leg to bed. Right: Height of the hand from floor

(ankle joint) in the exercise requiring bending to floor (il-

lustrated by the therapists involved in this study).
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features (see Section 4.2). Model hyper-parameters are set

as given above. To combine the independent feedback pre-

dictions into a combination of feedbacks associated with the

subject’s performance, prior probabilities on the distribu-

tion of combinations of feedbacks per subject is computed

from the database. Let fi, i = 1 . . . k be the set of possible

feedbacks for a specific exercise. For every combination

of possible feedbacks Fj = {fj1, fj2 . . . , fjk}, the prior

probability Pprior(Fj) is computed (Table 2). The poste-

rior probability on the combination of feedbacks associated

with a subject’s performance combines the prior informa-

tion and the model’s predicted probabilities:

Let X = (x1, x2 . . . , xn) be the feature vector of an in-

coming sample. The inference process determines the feed-

back combination F̂j = {f̂j1, f̂j2 . . . , ˆfjk) for the sample as:

F̂j = argmaxFj
{(Pprior(Fj) + ε)× Pmodel(Fj | X)},

(5)

where Pprior(Fj) is the prior probability, Pmodel(Fj |
X) is the conditional probability calculated as the product

of the probabilities estimated by each classifier, and ε ∈ R is

(a)

(b)

Figure 5: Mapping time-intervals (Raising leg task). (a)

Mean exercise signal V computed using DTAN (blue) and

an aligned incoming exercise signal Vi (green). Std of the

mean signal is shown shaded. (b) Red symbols indicate

marked time points on the mean signal. These are mapped

onto the aligned incoming signal Vi - cyan symbols. The

mapped points are then back-projected to the original in-

coming signal Ui using the inverse of the warping Wi asso-

ciated with Ui - pink symbols.

the Prior Adjustment Factor. Due to the small sample size,

a Prior Adjustment Factor is introduced and it’s intended to

ensure that all possible feedback combinations are consid-

ered, even in low or 0 prior probability.

5. Experimental Results
5.1. Predicting Exercise Scores

The proposed framework was tested on multiple ex-

ercises using feature vectors derived based on insights

from therapists and close monitoring of the exercises, and

achieved an accuracy level of 80% or higher on predicting

execution score (Figure 6). Table 1 showcases the evalu-

ation metrics of our framework on two specific exercises,

including accuracy, precision, recall, and F1 macro scores.

Raising leg onto the bed This task involves various ex-

ercises of raising a leg onto the bed: using a canvas belt,

with hand assistance, and with assistance from the healthy

leg. These three variations share the same goal and evalua-

tion criteria, thus they were combined into a single dataset.

This task was performed by 42 participants who completed

a total of 115 exercises, of which 20 were unsuccessful

(score=0), 49 were partially successful (score = 1), and 46

were performed successfully (score = 2).

The golden feature was defined as the distance between

the ankle and the bed as shown in Figure 4 (left).

During each execution of the exercise, which consisted

of multiple iterations, several spatio-temporal features were

calculated for each iteration:

1. Ankle speed during leg-raising interval

2. Minimum height of ankle

3. Maximum height of ankle

4. Mean knee angle

5. Duration (%) knee angle exceeded 140◦ (indicating a

straight leg) during leg-on-bed interval

6. Mean ankle depth

7. Duration of leg raise

8. Mean distance between left shoulder and left hip along

the Y-axis

9. Mean distance between right shoulder and right hip

along the Y-axis

10. Distance of the golden feature signal from the mean

signal calculated as the mean square error divided by

the std at each sample point of the sequences.

These features were taken for the best iteration (that with

minimal distance to the mean signal - Section 4.1). Two

additional features were computed by taking the mean of

features 1 and 10 across all iterations. These two additional
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Figure 6: Confusion matrices. Left: Results for raising leg onto bed. Right: Results for bending down to floor exercise.

features (number 11 and 12) aim to capture the overall char-

acteristics of the exercise execution, rather than focusing on

a single iteration.

The model was evaluated using LOO. Figure 6(left)

shows the resulting confusion matrix. 80% accuracy was

obtained with the majority of mis-predictions occurring be-

tween scores 1 and 2 (partial success and success). It is

worth noting that even therapists often disagree on the score

of a specific imperfect execution.

Performing feature ranking revealed that the following

five features contributed the most to the classifier’s output

(in decreasing order): 10, 3, 11, 6, 2. Note that the compar-

ison to the mean signal is the most predictive feature.

Table 1: Evaluation metrics for the predicting exercise

scores model. Accuracy calculation incorporates the im-

balanced class sizes.

Run Accu-
racy

Macro
Preci-
sion

Macro
Recall

Macro
F1-

Score
Raising leg 0.8 0.83 0.78 0.8

Bending 0.85 0.85 0.85 0.84

Bending down to the floor This task involves bending

down to the floor, in two variations: from a seated posi-

tion on the bed and while holding a heavy stick with both

hands. The two variations were combined into a single

dataset. This task was performed by 27 participants who

completed a total of 48 exercises, of which 8 were unsuc-

cessful (score=0), 13 were partially successful (score = 1),

and 27 were performed successfully (score = 2). The num-

ber of participants differed from the previous exercises, as

not all patients were permitted to perform the bending down

exercise due to associated risks.

The golden feature was defined as the distance between

the hand and the ankle, captured by a side-facing camera as

shown in Figure 7.

Figure 7: Side-facing camera: Bending down to the floor

(illustrated by the therapists involved in this study).

For feature extraction, we defined two time intervals

within this exercise: Interval 1 where hand descends to floor

(segment marked by circle and square in Figure 8) and Inter-

val 2 between reaching the ground and beginning to ascend

(marked by square and triangle in Figure 8). The following
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Figure 8: Time intervals for bending down to the floor task.

features were calculated for each iteration of the exercise:

1. Hand speed during Interval 1

2. Minimum height of hand from floor

3. Maximum height of hand from floor

4. Mean hip angle in Interval 2

5. Duration (%) hip angle less than 45◦ in Interval 2

6. Mean distance between hand and ankle in Interval 1

7. Duration (%) distance between hand and ankle was

less than 20cm in Interval 1

8. Distance of the golden feature signal from the mean

signal (calculated as the mean square error divided by

the std at each sample point of the sequences)

These features were taken for the best iteration (that with

minimal distance to the mean signal). Additional features

were computed by considering all iterations:

9. Mean of feature 1 across all iterations

10. Minimum of feature 4 across all iterations

11. Maximum of feature 5 across all iterations

12. Minimum of feature 6 across all iterations

13. Maximum of feature 7 across all iterations

14. Mean of feature 8 across all iterations

The model was evaluated using LOO. Figure 6(right)

shows the resulting confusion matrix. Accuracy of 85% was

obtained.

Performing feature ranking revealed that the following

features were most predictive: 4, 5, 12, 8, 14.

5.2. Predicting Feedback for low scoring tasks

We trained a multi-label ML model to predict the feed-

back comments received when exercise execution was only

partially successful (score=1) (see Section 4.4). The leg-

raising exercise serves as an example. The feedback in this

task includes: partial movement, problem with knee angle,

non-smooth movement, and back compensation.

The dataset consists of 35 patients who received a score

of 1, excluding patients who verbally reported pain or phys-

ical difficulties. The distribution of combinations of feed-

back comments are presented in Table 2.

Table 2: Labels distribution - Prior Probabilities

Partial
Move-
ment

Problem
with
Knee
Angle

Non-
Smooth
Move-
ment

Back
Compen-

sation

Probabil-
ity

0 0 0 1 12
35

1 0 0 0 6
35

0 1 0 0 5
35

1 0 0 1 4
35

0 0 1 0 4
35

1 0 1 0 2
35

0 0 1 1 1
35

0 1 1 0 1
35

The sample features defined in Section 5.1 were used

to train the multi-label model. The prediction were gen-

erated as described in Section 4.4, with ε = 0.3. The model

achieved 72% accuracy in predicting the specific combi-

nation of comments for partially-successful cases. (Note,

chance level is 6.25%). If the prior-probability informa-

tion is ignored and only the predictions of the independent

models are considered, the resulting accuracy is only 68%
compared to the improved accuracy of 72% when priors are

considered.

6. Conclusion and future work

This paper proposed a framework for automatically eval-

uating rehabilitation exercises using machine learning and

2D cameras. The framework was tested on various exer-

cises, including daily functional tasks, and achieved an ac-

curacy level of 80% or higher. Features were selected based

on occupational therapist feedback. Although the frame-

work demonstrated promising results, improvement could

be achieved with improved joint tracking.

The use of 2D cameras offers a cost-effective and user-

friendly alternative to specialized equipment for exercise

tracking. The proposed framework has the potential to

enhance rehabilitation programs by providing consistent

and accessible quantitative assessments of patient progress.

Moreover, the framework has the potential to support effec-

tive home-based healthcare, allowing patients to perform

exercises remotely while receiving personalized feedback

and guidance.
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