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Abstract

In this work, we present a framework for dynamic hand
gesture recognition on RGB images acquired by an over-
head camera. The recognition is realized for Methods Time
Measurement-based planning of human-robot collaborative
workspace. The 3D hand posture is estimated by Medi-
aPipe. The recognition is done by a neural network in which
a layer-wise feature combination takes place. We com-
bine features extracted by basic blocks of Spatio-Temporal
Adaptive Graph Convolutional Neural Network and by ba-
sic spatio-temporal self-attention blocks. We recorded and
manually annotated 12 videos consisting of 54,659 RGB im-
ages with five basic motion sequences: grasp, move, posi-
tion, release, and reach. We demonstrate experimentally
that results of our networks are superior to results achieved
by RNNs, ST-GCN, ST-AGCN, and CTR-GCN networks.

1. Introduction

Recognition of hand gestures is a very important prob-

lem due to numerous potential practical applications, in-

cluding robotics [24], medicine, augmented reality [27],

and virtual reality [26, 19, 13]. In recent years, there has

been a growing interest in the problem of recognizing hand

gestures [3, 1, 11, 30]. Li et al. [19] argue that hand gestures

can be distinguished according to different spatiotemporal

operational behaviors, modes of interaction, semantics, and

ranges of interaction. Due to the significant development of

sensor technologies on the one hand, and on the other hand

due to the significant improvement in the ratio of computing

power to the energy consumed for embedded systems, more

and more attention is now being paid to techniques of recog-

nizing dynamic gestures [26]. Dynamic gesture recognition

techniques based on a single RGB camera, RGB-D sensors

or multi-camera systems are among the most attractive due

to the fact that they do not absorb the user’s attention to a

large extent [3].

Due to the rapid technological progress resulting in

enhanced capabilities of service and collaborative robots,

there is currently a significant increase in interest in the use

of gesture recognition for the purposes of broadly under-

stood robotics [20, 27, 24]. One of the most useful forms

of human-robot interaction (HRI) is the collaborative as-

sembly [24]. In these types of tasks, the user assembles a

more complex object from certain parts through a sequence

of sub-processes, where the collaborative robot actively as-

sists the worker in completing the tasks. A person and

a collaborative robot work on the same task, in the same

workspace, at the same time. Sharing the same workspace

is a fundamental element of this kind of HRI. To date, only

a few vision-based systems have been developed to support

human-machine collaboration by visual tracking the human

posture or skeleton, recognizing hand gestures, detecting

gazes and recognizing intentions [24].

A research carried out at Toyota Research Institute Eu-

rope resulted in an advanced neural model [29] that utilizes

an artificial cognitive architecture to read the intentions of

the human partner, using social cues to differentiate goals.

The model was verified and validated in interactive HRI ex-

periments, which consisted in jointly playing by a human

and a collaborative robot arm a joint manipulation game

using game blocks. In the block placing experiments the

robot was able to correctly predict the partner’s intentions

using lightweight machine learning methods. Gao at al.

[14] utilized a weighted sum fusion to combine the RGB,

depth and 3D skeleton data in a framework developed for

dynamic hand gesture recognition for human–robot interac-

tion. The 3D hand skeleton have been determined by Open-

Pose. A 3CDNN+ConvLSTM neural network has been

used to identify and classify the combined data with dy-

namic hand gesture. A neuro-inspired model for action

selection in a human-robot join action scenario using Dy-

namic Neural Fields has been proposed in [9]. The model

has been evaluated in a real construction scenario with the

robot Sawyer, which selected the next part to be mounted,

together with its human partner. The two-dimensional Ac-

tion Execution Layer allows the representation of the com-

ponents object and action in the same field. A recently pub-
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lished work [18] proposes an approach that extends the ac-

tion recognition to multi-variant assembly processes. It uses

generalized action primitives derived from Methods-Time

Measurement (MTM) analysis, which are recognized on the

basis of 3D skeletal data and a spatial-temporal graph con-

volutional neural network (ST-GCN). The 3D hand skeleton

of has been extracted by the Kinect sensor.

In this work, we present a system for continuous hand

gesture recognition for human-robot collaborative assem-

bly. The working area that is shared between a worker

and a robot is observed by an overhead RGB camera. The

3D hand posture is estimated by the MediaPipe. We pro-

pose a neural architecture that combines features extracted

by basic blocks of adaptive graph neural network with

features extracted by basic spatio-temporal self-attention

blocks. We recorded and manually annotated 12 videos

consisting of 54,659 RGB images with five basic motion

sequences: grasp, move, position, release, and reach. We

demonstrate experimentally that our network achieves su-

perior results to results achieved by RNNs, ST-GCN, ST-

AGCN, and CTR-GCN networks. The data for training

and evaluating neural networks are available at: https:

//home.agh.edu.pl/˜bkw/data/ACVR/.

The rest of the paper is organized as follows. In the next

Section we discuss relevant work. Next, in Section 3 we

outline preliminaries. We outline RNNs (Recurrent Neu-

ral Networks), ST-GCN (Spatio-Temporal Graph Convo-

lutional Network), ST-AGCN (Spatio-Temporal Adaptive

Graph Convolutional Network), and multi-head attention

mechanisms. In Section 4 we present the proposed ap-

proach. In Section 5, after outlining our dataset, we present

experimental results. In Section 6 we present conclusions.

2. Relevant Works
Human action recognition in RGB or RGB-D images

is an active research area [32]. For 3D skeleton-based

human action recognition several effective solutions re-

lying on both graph neural networks [33, 25, 7] and

transformer-based networks have been developed [31]. One

of the important factors stimulating the development of

skeleton-based action recognition algorithms was capabil-

ity of the Kinect SDK of the real-time 3D skeleton esti-

mation. Thanks to this a number of benchmark RGB-D

datasets [21] were registered on which very good results of

recognizing human actions were then obtained. In general,

graph-based neural networks provide better results than net-

works based on transformer mechanisms [31]. However, in

the near future we should expect a significant improvement

of transformer-based skeleton action recognition.

Due to the fact that 3D hand skeleton estimation requires

specialized equipment such as special gloves or multi-

camera mocap systems, so far relatively few papers have

been devoted to recognition of dynamic hand gestures based

on 3D hand data. Most of work in this research area con-

cerns dynamic gesture for sign language recognition or, ul-

timately, quite broadly understood human-machine interac-

tion. A recently published CNN-based model for human-

machine interaction [5] achieved high accuracy on recog-

nition of five static gestures. A method for dynamic ges-

ture recognition by combining 2D convolutional neural net-

works with feature fusion is proposed in [34]. In this

method, the original keyframes and optical flow keyframes

are utilized to extract spatial and temporal features, which

are fed to a 2D CNN responsible for fusing them and fi-

nal recognition. Recently, an effective deep architecture to

classify in real-time various gestures from continuous data

streams acquired by a live camera has been proposed in [2].

In a recent work, [4], Long-Term Short Memory (LSTM),

Temporal Convolution Networks (TCN) and transformer-

based models were proposed for isolated sign language

recognition. The method employs MediaPipe [22] human

pose estimator to estimate hand and face keypoints. It has

been show experimentally that combining hand and face

keypoints leads to improved recognition accuracy compared

with networks operating on only hand keypoints.

3. Preliminaries
3.1. MediaPipe

Estimating hand posture (3D skeleton) based on RGB

images is an inherently ill-posed problem due to the lack of

depth information in the 2D input data. MediaPipe Hands is

an efficient and accurate hand and finger tracking platform

[22]. The discussed platform uses advanced artificial intel-

ligence techniques to infer the 3D position of the character-

istic points of the hand joints based on a single RGB image.

It employs a single-shot palm detection model (SSD) and

once this is done it carries out precise localization of 21

3D palm coordinates in the determined hand region. Me-

diaPipe delivers several customizable pre-trained models to

estimate and to track 3D hand skeletons. In this work, Me-

diaPipe Hands is utilized to provide streams of 3D joints

locations from RGB image sequences.

3.2. Recurrent Neural Networks

The LSTM (Long Short-Term Memory) [17] is a type of

recurrent neural network that learns long-term dependen-

cies between time steps of data stream. The LSTM has

three gates: input, forget, and output, which are responsible

for regulating the flow of information through the network.

The input gate is responsible for deciding which informa-

tion should let in, the forget gate decides which information

to keep or discard from the cell state, whereas the output

one decides which information to output. Each LSTM has

a cell state through which the information is carried to the

gates. The BiLSTM [15] builds and trains two LSTM neu-
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ral networks operating together in the forward and back-

ward directions. In contrast to the LSTM, GRU [8] has

only two gates: reset and update, which makes it simpler

and faster, but also less powerful and adaptable. The re-

set gate decides which information to discard from the pre-

vious hidden state, whereas the update gate decides which

information should be added to the new hidden state. Gen-

erally, GRU neural networks outperform LSTMs on low-

complexity data sequences while on high-complexity data

sequences the LSTMs perform better.

3.3. Spatio-Temporal Adaptive Graph Convolu-
tional Neural Network

Although RNN-based methods achieve good perfor-

mance on multivariate time-series classification, modeling

the skeleton data as sequence of joint coordinates is not an

optimal solution, since the skeleton data is naturally embed-

ded in a graph structure. Graph neural networks are well

suited for capturing geometrical relations between joints

due to their natural capability of handling non-euclidean

data. ST-GCN [33] captures both patterns embedded in

the spatial configuration as well as the temporal dynamics

in skeleton sequences. Most of the skeleton-based action

recognition approaches are built upon the base block of ST-

GCN in which alternating between graph convolution and

temporal convolution takes place. Spatio-temporal Adap-

tive Graph Convolutional Network (ST-AGCN) [25] has an

attention mechanism and is capable of dealing with adaptive

graphs. In contrast to ST-GCN networks the graph topol-

ogy in this network is an optimized parameter and is unique

for every layer. Additionally, owing to a residual branch

it has better training stability than ST-GCN. ST-AGCN and

its dual-stream (bone and joint) extension 2s-AGCN have

been developed to recognize human actions from skeletal

data streams. They are widely used for recognition of hu-

man actions on the basis of skeletons extracted by Kinect

sensors, which deliver skeletons consisting of 25 joints.

The adaptive spatial graph convolution layer employs

both the provided adjacency matrix as well as parameter-

ized and optimized adjacency matrices. The adaptive spatial

graph convolution can be described in the following man-

ner:

fout =
Kv∑
k

Wkfin(Ak +Bk + Ck) (1)

where Kv = 3 stands for the kernel size of the spatial di-

mension, Wk denotes the dout × din × 1× 1 weight vector

of the 1× 1 convolution, where d is number of in/out chan-

nels, fin is the input feature vector, fout is the output fea-

ture vector, whereas Ak, Bk, Ck are the adjacency matrices.

Ak represents the physical structure of the human hand in

the form of the adjacency matrix, i.e. it determines whether

there are connections between two graph vertexes. Bk is

a matrix whose elements are parameterized and optimized

along with other parameters when training the network. It

allows learning new vertex connections. Ck is a data de-

pendent adjacency matrix, which learns a unique graph for

each sample. It is determined through embedding the in-

put features through a 1 × 1 convolutional operation and a

softmax function. If the number of input channels differs

from the number of output channels, a 1 × 1 convolution

is included in the residual path. The convolution for the

temporal dimension is identical to the convolution in ST-

GCN [33]. The spatial and temporal GCNs are followed by

a batch normalization layer and a ReLU layer. The basic

AGCN block is parameterized by: number of input chan-

nels din, number of output channels dout, and stride s. If

the number of samples is being halved, the number of out-

put channels is doubled.

3.4. Multi-head Attention

Recently, a number of works have shown that

transformer-based architectures such as Vision Transformer

(ViT) [10] match or even surpass best CNN networks in im-

age classification tasks, including ResNets [16]. The basic

block of such architectures is the self-attention mechanism

[28], which can learn the global dependencies between the

input elements of data sequences. It performs sequence-to-

sequence transformation where a sequence of vectors is fed

on the input, and a sequence of vectors comes out at the

output. One of the most important properties of the self-

attention mechanism is the capability of adaptive adjusting

relationships with neighbors according to their responses.

Through determining a weighted average of sequence ele-

ments with the weights adaptively calculated on the basis of

an input query and elements’ keys, this mechanism dynam-

ically decides on which elements is worth to attend more

than others.

Given a set of inputs X ∈ R
n×d, and learnable parame-

ter matrixes Wq ∈ R
d×dq , Wk ∈ R

d×dk , Wv ∈ R
d×dv ,

where n is the sequence length, and dq , dk and dv are

the hidden dimensionality for queries/keys and values, re-

spectively, the query(Q = XWq), key(K = XWk), and

value(V = XWv) matrices are calculated first. Assum-

ing that dq = dk, Q and K are of size n × dk, whereas V
is of size n × dv , the softmax dot product self-attention is

calculated as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2)

The dot product for every possible pair of queries and keys

is performed in the matrix multiplication QKT . This means

that using the dot product as the similarity metric, the atten-

tion value from element i to j is based on its similarity of

the query Qi and the key Kj . The result of dot product is a

matrix of size n×n, where each row represents the attention
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logits for a specific element i to all other elements in the se-

quence. Under assumption that q and k are dk–dimensional

vectors with components that are independent random vari-

ables such their mean is equal to 0 and variance is equal to 1,

then their dot product q ·k =
∑dk

i−1 uivi has mean equal to 0

and variance equal to dk. Hence, division by
√
dk should be

performed to obtain the preferred dot product with the unit

variance. Because of the above the result of dot product of

the queries with the keys in (2) is scaled by the square root

of dk. The resulting attention scores are then fed into the

softmax function. The attention weights calculated in such

a way are used to scale the values V through a weighted

multiplication operation.

One of the core mechanisms related to self-attention is

the multi-head attention. It was introduced due to the obser-

vation that different elements of the sequence relate to each

other in different ways. The query, key, and value matri-

ces are transformed into h sub-queries, sub-keys, and sub-

values, respectively, which are then processed through the

scaled dot product attention independently. The indepen-

dent attention outcomes are concatenated and then linearly

transformed into the expected dimension. It is worth not-

ing that the multi-head attention is permutation-equivariant

with respect to its inputs.

4. Framework for Skeleton-Based Gesture
Recognition

4.1. Methods-Time Measurement

Assembly time is one of the main estimates of assem-

bly cost. Whether an assembly system is being planned or

measures are being taken to increase the capacity of an ex-

isting assembly line, a fast and reliable method of estimat-

ing the time needed to complete a given assembly task is

essential. Assembly time is defined as the time from start

to finish assembly operation. Methods-Time Measurement

is employed in industry to describe, analyze, evaluate and

schedule manual tasks [12]. The MTM-1 standard consid-

ers five basic motions: grasping, moving, positioning, re-

leasing, and reaching. Reach is a basic element of move-

ment related to the movement of the hand or fingers. It is

utilized to describe the movement of a hand or finger to a

new destination. The grasp operation is employed to de-

scribe the control of one or more objects with the fingers

or hands. The move operation is utilized to describe the

phase of relocating the object to a new location. The po-

sitioning operation is usually preceded by the moving mo-

tion and is used to describe the orientation or positioning of

one object relative to another object. Release is for describ-

ing the phase that ends control of an object with the hand

or fingers. Planning a workplace based on the MTM is a

time-consuming task, because each movement and its du-

ration are usually determined by planning and ergonomics

specialists. Due to the above, there is a fairly high demand

for methods that automate such processes.

4.2. Scenario

The layout of the scene has been designed in such a way

as to faithfully recreate the conditions that the vision system

would have to deal in a situation with a real human-robot

cooperative assembly. The worker’s task is to pick up ob-

ject by object from the box, move it to the stand the right

side, and positioning it in the required pose and desired lo-

cation. The scene is observed by a single overhead camera.

The aim of the vision system is to continuously classify the

hand motions into five classes. In a future work the Franka-

Emika robot will employ a depth camera (Asus Xtion) that

is already mounted on the gripper to grasp and then move

the objects to new locations.

4.3. Proposed Approach

Let f : R
d × R

d → R be a function taking two vec-

tors R
d as the input, then the self-attention score (weight)

matrix S is defined as Sij = f(Qi,Kj) ∀i, j ∈ [n]. Let

h : R
n×n → R

n×n be a normalization function, then the

self-attention can be expressed in the following manner:

Attention(Q,K, V ) = h(S) · V (3)

Hence, we assign higher weight to those value vectors

whose corresponding key is most similar to the query.

Original transformer operates on sequential data, i.e., it

is fed with a matrix X ∈ R
n×d. For sequence of skeletal

data the input is a 3-order tensor X ∈ R
n×t×d, where t

stands for the number of skeletal data. This means that the

input skeletal data has two dimensions, i.e., space and time.

Thus, as in ST-GCN that alternates between graph convolu-

tion and temporal convolution, in each basic layer the data

will be reshaped according to the following scheme: (i) re-

shape input to size n× td, (ii) execute spatial attention, (iii)

reshape n × td to t × nd, (iv) execute temporal attention.

The whole STSA-Net network consists of l such basic lay-

ers, usually l = 8. Depending on the temporal or spatial di-

mension, a spatial or temporal position features, are added

to the data, which are then fed to Conv2D with 1 × 1 ker-

nel and (s, 1) stride. As the position encoding functions the

sine and cosine functions with different frequencies [28] are

employed at this stage. In spatial encoding, the joints are

encoded in turn, one after the other, and all frames in the

sequence have identical encoding. In temporal encoding, a

given joint is encoded over time sequentially. Positionally

encoded and embedded queries/keys are utilized to compute

the attention weights as in [28]. They are then used to scale

the values through a weighted multiplication operation. The

outcomes of all heads are concatenated and mapped by an

linear layer to the output space R
n×tdout . The output of

the last layer is fed to a classification block. The stride s is
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equal to one for spatial dimension. For the temporal atten-

tion it is set to two, if it is necessary to reduce the number

of samples by half. The basic STSA-Net block is parame-

terized by: number of input channels din, number of output

channels dout, number of internal channels dk, and stride

s. If the number of samples is being halved, the number of

internal and output channels are doubled.

We investigated an architecture in which outputs of ba-

sic AGCN layers were concatenated with outputs of basic

STSA-Net layers. By setting s to the same value in both

concatenated networks, the outputs of layers to be concate-

nated have the same shape. As the concatenating the outputs

of both networks is over the channel dimension, the number

of concatenated channels is doubled. The concatenated out-

put is fed to 1×1 Conv2d with a number of output channels

two times smaller than the number of input channels.

5. Experimental Results

5.1. Dataset

A Logitech HD Pro Webcam C920 webcam was em-

ployed to acquire the images. It has been placed over the

scene to observe the assembly tasks. The training set con-

sists of 12 videos with a total of 54,659 RGB images of size

640×480. Figure 1 depicts sample images from the dataset

with the hand actions considered in this work: reaching,

grabbing, moving, positioning and releasing. All operations

performed during dataset acquisition consisted only of the

above-mentioned activities, which were always performed

in the same order. All images that make up the training set

were manually labeled, i.e. one of the five classes of MTM-

1 movements was assigned to each frame. Images in which

the hand was absent or a significant part of the hand was

outside the image were marked as class six. The number of

images in each category is as follows: reach – 3,553, grasp

– 16,414, move – 5,621, position – 10,669, and release –

17,030. Five performers participated in the recordings of

the training set. The test set consists of three movies with

a total of 31,190 RGB images. The number of images in

each category is as follows: reach – 3,911, grasp – 10,140,

move – 5,523, position – 4,044, and release – 7,038. The

actions were performed by two people who did not partic-

ipate in the registration of the testing set. Determination

of the 3D hand skeleton was carried out based on the Me-

diaPipe Hands Python API. 21 points with 3D coordinates

x−, y− and z− were determined on each image with the

hand by the MediaPipe. Figure 2 shows the hand skeletons

that have been determined by MediaPipe in the images from

Fig. 1. After manually labeling the images, the 3D coordi-

nates of the hand keypoints along with the action class were

recorded for each image. Hand joint coordinates with class

labels were stored in the train and the test datasets.

5.2. Experimental Evaluation

At the beginning, we implemented and trained recursive

neural networks, which are commonly used to classify mul-

tidimensional time series. The neural networks were trained

and evaluated on streams of 3D locations of hand joints,

which were determined in advance by the MediaPipe. First,

we trained an LSTM neural network. The network con-

sisted of 128 hidden nodes in two layers, a fully connected

layer with the number of neurons equal to half of the num-

ber of hidden nodes, and dropout layer followed by a clas-

sification layer with six neurons on the output. The size of

the time-window was set to 32. After training the LSTM we

determined its classification performance on the test subset.

The accuracy, precision, recall and F1-scores achieved by

this network are presented in the first row of Table 1. We

calculated the macro-F1 score because we considered all

classes to be equally important even though the test set is

unbalanced. The number of hidden nodes as well as num-

ber of neurons in the fully connected layers for both net-

works were the same as in the LSTM network. Compar-

ing the results obtained by these three mentioned networks,

which classify multidimensional time series without taking

into account the information resulting from the skeleton of

the hand, it can be seen that the best results were obtained

by the GRU neural network.

Next, we implemented, trained and evaluated an AGCN

neural network. The network consists of seven basic

TAGCN blocks with increasing output feature dimensions.

It operates on input tensor of size (32,21,3), i.e. (time steps,

joints, channels), which after reshaping it to (63,32) is fed to

batch normalization layer. The output of batch normaliza-

tion layer is reshaped to (3,32,21). The last TAGCN block is

followed by a global average pooling layer, which is in turn

followed by a fully connected layer on the output. Every

basic TAGCN block is composed of a spatial graph con-

volution that is followed by a temporal graph convolution

with respective kernel sizes. The output sizes of TAGCN

layers are as follows: (64,32,21), (64,32,21), (64,32,21),

(64,32,21), (128,16,21), (128,16,21), and (128,8,21). The

temporal stride was set to 1 except the fourth and sixth lay-

ers for which the stride was set to 2. The global average

pooling layer operates on tensors of size (1,128). The num-

ber of neurons in the last layer is equal to six. In the hand

graph we included additional links of the fingertips to the

base of the right neighbor finger, i.e. we additionally linked

the following graph edges: 4-5, 8-9, 12-13, 16-17, c.f. Me-

diaPipe hand skeleton. As can be seen in the fifth row of Ta-

ble 1, the results achieved by the discussed neural network

are better in comparison to results achieved by recurrent

neural networks. We trained and evaluated also a ST-GCN

neural network. The basic TAGCN block was replaced by

TGCN block, and the same block parameters have been

used to make the comparison of the classification perfor-
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mance fair. As can bee seen in Table 1 the results obtained

by ST-GCN are not only worse than the results obtained by

AGCN, but they are also worse than the results obtained

by the GRU. In experimental evaluations devoted to GCN-

based gesture recognition we trained and evaluated the re-

cently proposed CTR-GCN [7] on our dataset as it achieved

competitive results on action recognition benchmarks. This

network leverages novel channel-wise topology refinement

graph convolution (CTR-GC) to dynamically learn differ-

ent topologies and effectively aggregate features in unlike

channels. Significantly worse results than those obtained by

the ST-GCT and AGCN may indicate that the recognition of

hand gestures on 3D hand skeleton poses other challenges to

graph-based networks than recognition of human skeleton-

based action recognition, e.g. due to different articulation

and movements.

Next, we implemented the STSA-Net. We trained sev-

eral neural networks with different parameters, which we

selected experimentally. Similarly as the AGCN, the STSA-

Net operates on input tensor of size (32,21,3), which after

reshaping to (3,32,21) is fed to input layer, that outputs ten-

sors of shape (64, 32, 21). The output sizes of basic STSA-

Figure 1. Five basic hand motions according to MTM: reach, grasp, move, position, and release (from left to right).

Figure 2. 3D hand skeletons calculated by the MediaPipe on images from Fig. 1.

Table 1. Accuracy, precision, recall and macro F1-score achieved by neural networks on our dataset for dynamic hand gesture recognition.

Accuracy [%] Precision [%] Recall [%] F1-score [%]

LSTM [17] 83.03 79.21 79.28 77.02

Bi-LSTM [15] 86.37 88.99 83.63 85.40

GRU [8] 87.01 88.65 84.19 86.01

ST-GCN [33] 86.78 88.95 82.93 85.22

AGCN [25] 89.46 90.73 86.61 88.23

CTR-GCN [7] 85.93 88.28 82.34 84.67

STSA-Net 90.49 90.89 88.43 89.56

AGCN-STSA-Net 91.39 90.69 90.03 90.31

Figure 3. Confusion matrix on predictions of the AGCN, STSA-Net, and AGCN-STSA-Net networks.
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Net layers are as follows: (64, 32, 21), (64, 32, 21), (64, 32,

21), (128, 16, 21), (128, 16, 21), (256, 8, 21), (256, 8, 21),

and (256, 8, 21). The temporal stride was set to 1 except the

fourth and sixth layers for which the stride was set to 2. The

classification block was the same as in the AGCN. As we

can observe in Tab. 1 the classification accuracy achieved

by STSA-Net is far better than AGCN accuracy.

Finally, we implemented, trained and evaluated AGCN-

STSA-Net network. The output of the first AGCN layer

and output of the first STSA-Net layer have been concate-

nated over the channel dimension. Then the number of

channels was reduced twice using Conv2D with kernel of

size 1× 1. Next, output concatenation over channel dimen-

sion and then channel reduction using Conv2D with kernel

of size 1 × 1 has been executed on the output of the sec-

ond layer. The output calculated in such a way has been

processed the same way as in the STSA-Net. As we can

observe in the last row of Tab. 1, the classification accuracy

obtained by this neural network is better by 1.93% than the

accuracy obtained by the AGCN neural network, and is bet-

ter by 0.9% than the accuracy obtained by the STSA-Net

network. AGCN-STSA-Net achieves better F1-scores than

AGCN and STSA-Net neural networks. Figure 3 depicts

confusion matrices achieved by discussed neural networks.

The trained neural networks have been utilized in exper-

iments consisting in continuous hand gesture recognition.

By striding the window along time axis the 3-order tensors

have been extracted and then fed to the trained neural net-

work. Figure 4 demonstrates example print-screen of the

output window with sliders representing the classifications

scores. On the basis of continuous gesture recognition we

determined the execution times of individual hand gestures

along with statistics illustrating the discrepancies from the

average times.

Figure 4. Output window with sliders representing the classifica-

tion scores.

The neural networks were implemented in Python us-

ing PyTorch framework. They were trained in 25 epochs,

with batch size set to 64. The training was performed

using Adam optimizer and plateau learning rate sched-

uler [23] with an initial learning rate of 1e-4. Due to

training networks on unbalanced datasets, as in [6], the

AGCN, STSA-Net and our network were trained using

the focal loss. The focal loss copes with class imbal-

ance by down-weighting inliers (easy examples) such that

their contribution to the total loss is small even if their

amount is big. The size of the temporal window was

set to 32 frames. The 3D joints streams were extracted

using the MediaPipe with the minimum detection confi-

dence set to 0.4, whereas the minimum tracking confidence

for tracking the landmarks in consecutive images was set

to 0.5. All networks were trained on two Nvidia A100

GPUs. Example video illustrating the continuous gesture

recognition is available at: https://home.agh.edu.pl/

˜bkw/demos/AGCN-STSA-Net.avi, c.f. sample image

on Fig. 4.

6. Conclusions
In this work we presented a framework continuous hand

gesture recognition for human-robot collaborative assem-

bly. We proposed a spatio-temporal self-attention network

for dynamic gesture classification, and a spatio-temporal

neural network that combines features extracted by graph-

based layers with features extracted self-attention layers and

then uses them for gesture classification. We recorded a

dataset dynamic hand gesture recognition with manually la-

beled several thousand images. We demonstrated experi-

mentally that the proposed neural networks have some po-

tential. On our dataset they achieve better classification ac-

curacies than ST-GCN, ST-AGCN, and recently proposed

CTR-GCN.
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