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Abstract

Lane detection is a basic but challenging task in au-
tonomous driving systems. With a combination of high-
level and low-level information, early studies of lane detec-
tion have achieved promising results in some scenes. How-
ever, achieving better performance is still an urgent need
for complex and diverse road conditions. We assume that
learning and balancing the finer-scale features and global
semantics is one of the keys to improving lane detection per-
formance under these road conditions. In this paper, we
propose an integrated feature pyramid network with fusion
factor (IFPNet) for better hierarchical information learning
and balancing, where a novel FPN structure named Inte-
grated Feature Pyramid (IFP) is proposed for better hierar-
chical information integration. Classification Fusion Fac-
tor (CFF) is also utilized for the balance of hierarchical in-
formation. Moreover, we design the regression IoU (RIoU)
loss for curve regression, which measures the overlap of the
predicted and ground truth lane lines more effectively. We
conduct experiments on three benchmark datasets of lane
detection and achieve state-of-the-art results with high ac-
curacy and efficiency.

1. Introduction
Lane detection is a fundamental but challenging task in

autonomous driving systems, which can help vehicles get

their relative location and respond to emergencies in real-

time. Traditional autonomous driving techniques rely on

multi-sensor fusion, which requires expensive inertial guid-

ance components and LIDAR [29]. But with the help of

lane detection, vehicles can automatically detect lane lines

from images captured only by front-mounted cameras.

Early studies of lane detection focus on the utilization of

manually extracted features based on priors such as color

and structure [12, 13, 33]. After pre-processing the possible

lane lines obtained from the extracted features, methods like

Hough transform [18] and Kalman filter [40] are used to fil-

Figure 1. Examples of complex and diverse road conditions in the

lane detection task. (a) The case where the curve at the end of the

field of view can be easily ignored and mistaken as a straightaway

by detection methods. (b) Crowded scenes during peak periods

where most of the lane lines are hidden. (c) The shadows of trees

make light spots on the ground look like lane lines. (d) The case

where there is no obvious white or yellow line on the ground. (a)

and (b) indicate complex road conditions in the lane detection task

whereas (c) and (d) indicate diverse road conditions in the task.

ter out unreal or densely predicted lines to output the final

lane lines. These methods commonly get limited results in

various road environments. Recently, with the development

of CNN, segmentation-based methods [24, 41, 43] are pro-

posed for lane detection. However, treating lane detection

as a common segmentation task ignores lane lines’ narrow,

continuous, and structured characteristics. To alleviate this

issue, anchor-based [14, 28, 31] and curve-based [4, 20, 35]

methods with faster speed are proposed to achieve better

detection results.

Although better results have been obtained, further im-

proving the accuracy of lane detection is still a vital task. As

shown in Fig. 1, recently proposed lane detection methods

may still suffer from unsatisfactory results in some com-

plex and diverse road conditions. In Fig. 1(a), a curve is

in front of the vehicle and at the end of the field of view.

It can be easily ignored and mistaken as a straightaway by

lane detection methods, leading to less reaction time for the

vehicle to turn. A scene of rush hour or traffic jams is illus-

trated in Fig. 1(b), where most of the lane lines are hidden
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by other vehicles. The above two examples indicate com-

plex road conditions, where learning finer-scale features is

essential for subtle lane line detection. For diverse road con-

ditions, in Fig. 1(c), the shadows of trees cause dashed-like

light spots on the ground, misleading the detection meth-

ods about the appearance of a lane line there. In Fig. 1(d),

the lane lines are not common white or yellow lines but are

composed of protrusions on the edge of the road, manually

set railings, and so on. For the above two examples, besides

the finer-scale features for subtle lane line detection, global

semantics is also essential during the process of lane line

feature learning and refinement. According to the four ex-

amples in Fig. 1, finer-scale features and global semantics

are two indispensable parts of the lane detection task. How-

ever, recent works usually failed on these complex and di-

verse road conditions, indicating the limited ability of finer-

scale features and global semantic extraction. CLRNet [44]

proposes a network that refines features from high-level to

low-level to exploit contextual information, but hierarchical

information can be learned and balanced.

In this paper, we propose an integrated feature pyramid

with a fusion factor (IFPNet) for lane detection, which can

achieve better hierarchical information learning and balanc-

ing. Specifically, a novel FPN [16] structure named Inte-

grated Feature Pyramid (IFP) is proposed to improve hierar-

chical information learning. Inspired by [8], a fusion factor

module named Classification Fusion Factor (CFF) is intro-

duced for hierarchical information balancing. Unlike the

traditional FPN structure [16], our proposed IFP focuses on

integrating finer-scale features and global semantics in the

lane detection task. Moreover, to make the predicted curves

fit the ground truth lane lines better, we refer to the IoU loss

in the object detection task and propose a regression IoU

(RIoU) loss, which measures the overlap of the predicted

and ground truth lane lines in a more effective way. Exper-

imental results on three lane detection benchmark datasets

demonstrate the effectiveness of our method. The main con-

tributions of this paper can be summarized as follows:

• We propose an integrated feature pyramid with fusion

factor (IFPNet) for lane detection, where a novel FPN

structure named Integrated Feature Pyramid (IFP) is

proposed for better hierarchical information learning.

The CFF module is applied to the IFP for better hierar-

chical information balancing. The proposed IFPNet is

a plug-and-play module that can be applied on differ-

ent backbones in different applications.

• For better curve regression, we propose a regression

IoU (RIoU) loss to measure the overlap of the pre-

dicted and ground truth lane lines.

• The state-of-the-art results have been achieved on lane

detection benchmark datasets, demonstrating the ef-

fectiveness of our proposed IFPNet. Ablation studies

are also carried out to evaluate the effectiveness of each

part of the IFPNet.

2. Related Works

Deep learning-based lane detection methods can be di-

vided into three mainstream categories corresponding to

three kinds of lane representation, which are segmentation-

based methods, curve-based methods, and anchor-based

methods, respectively.

2.1. Segmentation-based methods

Segmentation-based methods [7, 10, 41, 42] treat lane

detection as a per-pixel segmentation task. Since CNN was

introduced into the lane detection task, this kind of method

has been continuously refined. The SCNN method [ 24]

significantly improves the performance of lane detection

tasks compared to traditional methods, but the computa-

tional speed of the method is relatively slow for real-time

applications. LaneNet [23] proposes an end-to-end instance

segmentation pipeline, but it needs two separate networks

to cluster and obtain the structure of lane lines, which is

also time-consuming. Realizing the importance of global

semantics, RESA [43] proposes a feature aggregation mod-

ule to gather global features. It achieves real-time applica-

tion but still suffers from unsatisfactory results in complex

and diverse road conditions. Since the segmentation-based

methods cannot bypass the pixel-wise prediction step, ir-

relevant computation on the background area is inevitable,

leading to GPU resources and time consumption and the

degradation of real-time performance.

2.2. Curve-based methods

The output of curve-based methods [4, 20, 35] is para-

metric lines composed of curve equations (e.g., x = ay 3 +
by2 + cy + d, where (x, y) represents the coordinate of

pixels and a, b, c, and d denote the parameters of a line).

PolyLaneNet [32] proposes an end-to-end deep polynomial

regression method that outputs a polynomial to represent

each lane marker in an input image. BézierLaneNet [5] pro-

poses a novel Bézier curve-based deep lane detector, which

can model the geometric shape of lane lines effectively.

With the development of Transformer [36] on computer

vision tasks, some studies have introduced Transformer

into the lane detection task [3, 20] for better global se-

mantics learning. Compared to segmentation-based meth-

ods, curve-based methods commonly have fewer parame-

ters with faster inference speeds. However, since they are

sensitive to the predicted parameters [44], their performance

is not guaranteed, they may struggle especially on large and

complex datasets.
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Figure 2. The overall architecture of our proposed IFPNet, where “Neck” and “Head” denote components in our proposed FPN (IFP). The

input of the neck of IFP is multi-scale features output from a backbone network. The Classification Fusion Factor module (CFF) is applied

to balance global semantics and finer-scale features. The head of IFP is responsible for the generation of lane anchors, where an attention

structure is utilized for better feature learning. Regression IoU loss helps improve the regression of lane lines during training.

2.3. Anchor-based methods

Anchor-based methods [9, 14, 30, 31, 37] are currently

a popular direction of the lane detection task. UFLD

[28] is the first to propose the row-wise strategy, where a

lightweight backbone and a streamlined network enable ex-

tremely fast inference speed. However, in some complex

scenes (e.g., crowded, shadow, and night), its accuracy can

be obviously reduced. Similar works [19, 42] further ex-

plore row-wise methods and achieve better performance,

but they still get limited results on the prediction of the start

and end points of each lane and the regression of curves.

On the other hand, for better utilization of contextual infor-

mation, LaneATT [31] introduces an anchor-based attention

mechanism to aggregate global semantics. Similar to the

former work, CLRNet [44] proposes a network that refines

features from high-level to low-level. It achieves better re-

sults than all the above methods.

3. Method
The overall architecture of our proposed IFPNet is illus-

trated in Fig. 2. In the following of this section, we will

first introduce the detailed information of our proposed FPN

structure named IFP, and then show the definition of the pro-

posed regression IoU (RIoU) loss.

3.1. Integrated Feature Pyramid

3.1.1 Classification Fusion Factor Module

FPN [16] is a structure that combines high-level infor-

mation with low-level information. Previous research [8]

has demonstrated that the performance of FPN is affected

by the fusion proportion between two adjacent feature lay-

ers, which can be defined in the following manner:

Pi = flat (Pi + α× finter (Pi+1)) , (1)

where Pi is the i-th layer of FPN, flat is the 1× 1 convolu-

tion operation, α is the fusion proportion between the adja-

Figure 3. The relationships between F1-measure and different fu-

sion proportions on different types of images, where the y-axis

represents the improvement of F1-measure when α in the original

FPN is changed from 1 to another value.

cent feature layers, and finter denotes the 2× up-sampling

operation. As shown in Fig. 3, the prediction results on

different types of images in the lane detection task are af-

fected by the fusion proportion, which is denoted as α in

this paper. Besides, for different types of images, the op-

timal point corresponding to the peak of the F1-measure

varies, thus using a fixed fusion proportion α hampers us

from getting a better performance for up-sampling. Hence

an image-classification-based method is urgently needed for

calculating the optimal fusion factor for different types of

images.

Different from the traditional FPN structure that sim-

ply adds the low-level location information and the high-

level semantic information, we propose a Classification Fu-

sion Factor module (CFF) to further integrate high-level and

low-level information, which is more lightweight and effi-

cient. The detailed structure of CFF is shown in Fig. 4.

Before doing the up-sampling operation, the high-level fea-
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Figure 4. Structure of Classification Fusion Factor module (CFF).

Convolution in the figure is 3 × 3. C′ is an adjustable parameter

in the hidden layer, α′ represents 1× 1× 1 matrix, and α denotes

the classification fusion factor.

tures go through an unsupervised classification module CFF

to get the optimal fusion factor α to integrate high-level in-

formation with low-level information more accurately and

effectively.

3.1.2 Feature Integration

High-level features from the backbone usually have

more global information while low-level features usually

have more local information. The question is about how

to integrate high-level and low-level information to get bet-

ter performance. Inspired by former research [25, 27], we

use the refinement feature pyramid here to balance the in-

formation from high-level to low-level features, which can

help the head of the net to refine anchors accurately.

Since the scales of FPN’s output are different, we have to

unify the scales before integrating high and low-scale fea-

tures. The scale should be moderate in order to prevent valid

information lost or increase the computational effort. After

experimentation, we found that reshaping the output layer

to the second layer reaches the optimal while balancing the

local and global information, represented in Fig. 2 as P1.

All multi-scale features are reshaped to the shape of P1 with

no extra parameters to learn in order to save the computa-

tion resources. Then we take averages for these same scale

features to get the balanced information of different levels

of features, which can be mannered as follows:

I =
1

N

lmax∑
i=lmin

C
′
i , (2)

where I is the integrated multi-scale features, N is the num-

ber of the used backbone layers which begin from lmin to

lmax, and C
′
i is the feature map after scale unification from

up-sampling or down-sampling.

After the initial fusion, the global and local informa-

tion has been condensed into a feature map (I in Fig. 2).

However, in some complex scenes, global lane features are

harder to capture, and precise lane location relies on long-

distance contextual information. In order to further capture

the spatial dependencies of any two locations in the fea-

ture map and obtain long-range context dependency infor-

mation, we employ a self-attentive mechanism [36] to fur-

ther integrate the global contextual information. Numerous

studies have been conducted on self-attention mechanisms

in the computer vision field [6, 11, 15] during the past five

years. We found that both non-local [38] and CBAM [39]

work well in balancing the local and global information for

lane detection. The default module here is non-local, where

CBAM is also supported. The last step of IFP is the re-

shaping of the refined layer B with up-sampling or down-

sampling and then adding them to the output of CFF with

a learnable parameter σ, which can be represented in the

following manner:

Ri = (1− σ)Ci + σR
′
i. (3)

3.2. Attention Lane Detection

3.2.1 Lane Anchor

When given a series of input images R0, R1, R2, R3, the

goal of the head is to output a series of lines composed of

key points on the line, which is defined as follows:

lk =
{(

x
(k)
1 , y

(k)
1

)
, · · · ,

(
x(k)
n , y(k)n

)}
, lk ⊆ L (4)

where lk means the k-th lane of the image, n means the

number of key points on the lane, and L means the set of

lane lines in the image. All the key points of the line are

equally interval sampling by the y-axis, which is consistent

with the real situation of the lane line. To get the line set,

first, we get an anchor that expresses the basic information

about the lane line, which can be defined as:

Ai = {p̂i, xs, ys, θ, Len, y1, y2, . . . , yn} , (5)

where p̂i indicates the probability that the i-th line is

whether a lane line or background, (xs, ys, θ) represents a

straight line that the start point of the line is (xs, ys) and the

regression angel of the line is θ. Len means the total length

of the line. y1 to yn means the horizontal offset distance of

the accurate points from the regression points.

3.2.2 Attention Structure

Inspired by the structure of the transformer, the main

structure of the head of the net adopts the refinement struc-

ture, where the prior estimation of line anchors is generated

by positional embeddings and is refined by feature maps of

four scales from IFP in Sec. 3.1. The order of the refinement

is from high-level features to low-level features, which can

help the network to get the global lane information initially

and then correct the lane lines based on the local informa-

tion.

The detailed structure of the refinement module adopts

the attention module. Different from the traditional self-

attention module [36], we use dilated convolution to calcu-

late the key and value of the self-attention. It is experimen-

tally demonstrated that the use of dilation to increase the
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receptive field helps the network to obtain more global in-

formation to reduce the false detection of lane lines due to

local information such as light spots. The output matrix of

this module can be calculated in the following manner:

Ai = Softmax

(
Ai−1K

T

√
dk

)
V +Ai−1, (6)

where K and V are the output of IFP after stretching, and

Ai−1 is the anchor refined by the last layer (A0 is the prior

estimation of the line anchor).

3.3. Loss

Classification Loss As shown in Sec. 3.2.1, p̂i denotes the

probability of the i-th line is a lane line calculated by the

linear layer. To better distinguish between the lane lines and

background, we use classification loss, which is defined as:

�cls =

R∑
i=1

L∑
j=1

λclsL (p̂i,j , Gi,j) , (7)

where R is the number of refinement layers, L is the number

of lines in the ground truth, λcls is the weight of different

refinement layers, L is the cross-entropy loss, and Gi,j is

the ground truth of whether the line is a lane line or not.

Point Loss The start and end points of the lane lines are

crucial for the precise positioning of the lane lines. To find

the exact start of the lane, we propose point loss, which

corresponds to:

�point =
R∑
i=1

L∑
j=1

∥∥∥Ŝi,j − Si,j

∥∥∥
1
, (8)

where Ŝi,j is the start point of predicted line, Si,j is the start

point of ground truth line, and ‖ · ‖1 is L1 norm.

RIoU Loss The regression of the curve is crucial for the

precise positioning of the lane lines. And the regression

of the curve is composed of key points, i.e., the offset of

the row-wise position. We propose the regression IoU loss

(RIoU Loss) which represents the overlap of curves, which

can be written as follows:

�RIoU = 1− IoU +
λRIoU

n
|ŷi − yi| , (9)

where IoU is the sum of the overlapped pixels between the

predicted lane line and the ground truth lane line on the row

of the line, n is the total number of key points of the lane

line, and λRIoU is the loss coefficient that combines IoU

and regression distance.

Loss Aggregation The training loss of the net is composed

of three parts, classification loss, point loss, and RIoU loss.

The overall loss function � can be written as:

� = λ1�cls + λ2�point + λ3�RIoU , (10)

where λ1, λ2, and λ3 are coefficients of classification, point,

and RIoU loss, respectively.

Dataset Train / Val / Test (K) Scene

LLAMAS [2] 5.8 / 2.1 / 2.1 Highway

Tusimple [34] 3.3 / 0.4 / 2.8 Highway

CULane [24] 88.9 / 9.7 / 34.7 Urban&Highway

Table 1. Detailed information of the datasets.

4. Experiments and Results
4.1. Datasets

To verify the effectiveness of our proposed method, we

conduct experiments on three lane detection benchmark

datasets: CULane [24], Tusimple [34], and LLAMAS [2].

CULane is a widely used large dataset on lane detection in-

cluding eight hard-to-detect conditions. Tusimple is a com-

monly used dataset with images captured on the highway,

with clear weather and clear lane lines. LLAMAS is a re-

cently released dataset captured on the highway. Details of

the datasets are shown in Table 1.

4.2. Evaluation Metrics

For the CULane [24] and LLAMAS [2], we adopt the

F1-measure proposed by SCNN [24] as the evaluation met-

rics. Intersection-over-Union (IoU) between the predicted

lane line of the net and Ground Truth (GT) label is calcu-

lated to judge whether a sample is True Positive (TP), False

Positive (FP), or False Negative (FN). The F1 score is cal-

culated in the following manner:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
, (11)

F1 =
2× Precision×Recall

Precision+Recall
. (12)

For rigorous concerns, we also calculate mF1 as the eval-

uation metrics compared with the localization performance

of algorithms according to the COCO dataset [17], which

can be written as:

mF1 =
F1@50 + F1@55 + · · ·+ F1@95

10
, (13)

where F1@50, F1@55, . . . , F1@95 represent the calcu-

lated results of F1 where IoU thresholds are 0.5, 0.55, . . . ,

0.95 respectively.

For Tusimple [34], the evaluation metrics are composed

of three official indicators named accuracy, false positive

rate (FPR), and false negative rate (FNR). The method to

calculate accuracy is shown in the following manner:

accuracy =

∑
clip Cclip∑
clip Sclip

, (14)

where Cclip is the number of correct points and Sclip is the

number of Ground Truth (GT) points in an input image. If
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Method Backbone mF1 total normal crowded hlight shadow noline arrow curve cross night FPS GFlops

SCNN [24] VGG16 38.84 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10 7.5 328.4

FastDraw [26] ResNet50 - - 85.90 63.60 57.00 69.90 40.60 79.40 65.20 7013 57.80 90.3 -

UFLD [28] ResNet18 38.94 68.40 87.70 66.00 58.40 62.80 40.20 81.00 57.90 1743 62.10 341 8.4
UFLD [28] ResNet34 - 72.30 90.70 70.20 59.50 69.30 44.40 85.70 69.50 2037 66.70 184 -

RESA [43] ResNet34 - 74.50 91.90 72.40 66.50 72.00 46.30 88.10 68.60 1896 69.80 51 -

RESA [43] ResNet50 - 75.30 92.10 73.10 69.20 72.80 47.70 88.30 70.30 1503 69.90 39 -

LaneATT [31] ResNet18 47.35 75.13 91.17 72.71 65.82 68.03 49.13 87.82 63.75 1020 68.58 176 9.3

LaneATT [31] ResNet34 49.57 76.68 92.14 75.03 66.47 78.15 49.39 88.38 67.72 1330 70.72 145 18.0

LaneATT [31] ResNet122 51.48 77.02 91.74 76.16 69.47 76.31 50.46 86.29 64.05 1264 70.81 31 70.5

SGNet [30] ResNet18 - 76.12 91.42 74.05 66.89 72.17 50.16 87.13 67.02 1164 70.67 135 -

SGNet [30] ResNet34 - 77.27 92.07 75.41 67.75 74.31 50.90 87.97 69.65 1373 72.69 116 -

CondLane [19] ResNet18 51.84 78.14 92.87 75.79 70.72 80.01 52.39 89.37 72.40 1364 73.23 201 10.2

CondLane [19] ResNet34 53.11 78.74 93.38 77.14 71.17 79.93 51.85 89.89 73.88 1387 73.92 140 19.6

CondLane [19] ResNet101 54.83 79.48 93.47 77.44 70.93 80.91 54.13 90.16 75.21 1201 74.80 56 44.8

GANet [37] ResNet18 - 78.79 93.24 77.16 71.24 77.88 53.59 89.62 75.92 1240 72.75 164 -

GANet [37] ResNet34 - 79.39 93.73 77.92 71.64 79.49 52.63 90.37 76.32 1368 73.67 151 -

GANet [37] ResNet101 - 79.63 93.67 78.66 71.82 78.32 53.38 89.86 77.37 1352 73.85 67 -

CLRNet [44] ResNet18 55.23 79.58 93.30 78.33 73.71 79.66 53.14 90.25 71.56 1321 75.11 226 11.9

CLRNet [44] ResNet34 55.14 79.73 93.49 78.06 74.57 79.92 54.01 90.59 72.77 1216 75.02 184 21.5

CLRNet [44] ResNet101 55.55 80.13 93.85 78.78 72.49 82.33 54.50 89.79 75.57 1262 75.51 170 42.9

IFPNet ResNet18 55.43 79.95 93.57 78.13 75.78 81.74 53.39 90.50 71.69 1017 75.54 208 14.2

IFPNet ResNet34 55.54 79.80 93.57 78.52 73.33 80.61 53.75 90.34 72.92 1182 74.97 171 23.6

IFPNet ResNet101 56.32 80.33 93.58 78.94 75.06 82.50 54.21 90.68 73.26 1068 75.81 105 44.2

Table 2. State-of-the-art results of recently proposed methods on CULane. In order to test speed in the same environment, we remeasure

FPS on the same machine with an RTX3090 GPU through open-source code.

the accuracy of a predicted lane is greater than 85%, it will

be considered a True Positive (TP). The F1 score is also

used during the evaluation.

4.3. Implementation Details

In the experiments, we adopt ResNet as the pre-trained

backbone for our model. For all the proposed models, the

number of the used backbone layers N layers is set to 4. The

length of the lane anchor n is set to 72. All input images are

resized to 800× 320 pixels for training or testing. The loss

coefficients in Sec. 3.3 are set 2.0, 0.2, 2.0 corresponding to

λ1, λ2, and λ3. The training epochs for CULane, Tusimple,

and LLAMAS are set to 20, 90, and 20, respectively. In the

optimizing process, we use AdamW [22] and cosine decay

learning rate strategy [21] with an initial learning rate of 6e-

4. We train our model with a batch size of 32 on CULane,

Tusimple, and LLAMAS for 20, 90, and 20 epochs, respec-

tively. All the experiments are conducted on an NVIDIA

RTX3090 GPU.

4.4. Results

Results on CULane Comparisons of results of recently

proposed methods and our work on the CULane dataset are

shown in Table 2. Our work achieves state-of-the-art results

on both mF1 and the total F1 score. Our method achieves

the best performance in six of the eight difficult scenarios.

In particular, our proposed IFPNet achieves the best results

on “hlight”, “shadow” and “night”, showing our method can

adapt to complex environments with different light condi-

tions. Among them, “hlight” is 1.21% higher than the pre-

vious best result.

The visualization results on the benchmark dataset CU-

Lane of our method and previous best-performance meth-

ods are shown in Fig. 5. ResNet18 is taken as the back-

bone of each method to compare the visualization results on

the same scale. CondLaneNet solves the problem of fork

lines and dense lines but the continuity of the line is not

well. CLRNet only refines the anchor from high-level to

low-level instead of integrating them deeply, so it is easy to

miss lane lines under complex environments. Our method

works well in high brightness and dim light. Moreover, our

method is able to regress to the lane line more accurately,

both during the day and at night.

Results on Tusimple Comparisons of results of recently

proposed methods and our work on the Tusimple dataset

are shown in Table 2. Our method achieves new state-

of-art results on F1, False Negative Rate (FN), and accu-

racy, demonstrating that our method can be adapted to both

complex urban environments and simple highway scenar-

ios. Because the dataset is relatively simple (lane features

are obvious), the results are close.

Results on LLAMAS Comparisons of results between re-

cently proposed methods and our work on the LLAMAS

dataset are shown in Table 4. Our IFPNet performs well on

the dataset and we achieve state-of-art results on both mF1

and F1@75 scores. Due to the simplicity of the LLAMAS

dataset (on the highway with obvious features), the results

are close.
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Figure 5. The visualization results of Ground Truth (GT), CondLaneNet [19] (CondLane in the figure), CLRNet [44], and our method

IFPNet on the benchmark dataset CULane [24]. The results are generated with the same backbone ResNet18.

Method Backbone F1 Acc FP FN

SCNN [24] VGG16 95.97 96.53 6.17 1.80

RESA [43] ResNet34 96.93 96.82 3.63 2.48

FastDraw [26] ResNet50 93.92 95.20 7.60 4.50

UFLD [28] ResNet18 87.87 95.82 19.05 3.92

UFLD [28] ResNet34 88.02 95.86 18.91 3.75

PolyLaneNet [32] EfficientNetB0 90.62 93.36 9.42 9.33

LaneATT [31] ResNet18 96.71 95.57 3.56 3.01

LaneATT [31] ResNet34 96.77 95.63 3.53 2.92

LaneATT [31] ResNet122 96.06 96.10 5.64 2.17

CondLaneNet [19] ResNet18 97.01 95.48 2.18 3.80

CondLaneNet [19] ResNet34 96.98 95.37 2.20 3.82

CondLaneNet [19] ResNet101 97.24 96.54 2.01 3.50

CLRNet [44] ResNet18 97.89 96.84 2.28 1.92

CLRNet [44] ResNet34 97.82 96.87 2.27 2.08

CLRNet [44] ResNet101 97.62 96.83 2.37 2.38

IFPNet ResNet18 97.83 96.75 2.07 2.27

IFPNet ResNet34 97.93 96.73 2.34 1.78

IFPNet ResNet101 97.65 96.94 2.95 1.71

Table 3. State-of-the-art results on Tusimple.

Method Backbone mF1 F1@50 F1@75 GFlops

LaneATT [31] ResNet18 69.22 94.64 82.36 9.3
LaneATT [31] ResNet34 69.63 94.96 82.79 18.0

LaneATT [31] ResNet122 70.80 95.17 84.01 70.5

LaneAF [1] DLA34 69.31 96.90 84.71 23.6

CLRNet [44] ResNet18 71.61 96.96 85.59 11.9

CLRNet [44] ResNet101 71.21 97.16 85.33 18.5

IFPNet ResNet18 70.62 96.61 84.62 14.3

IFPNet ResNet101 71.63 97.00 85.66 44.0

Table 4. State-of-the-art results on LLAMAS.

4.5. Ablation Study

To further demonstrate the role of each module in our

net for lane detection, we conducted ablation experiments

on the benchmark dataset CULane using the same backbone

ResNet18.

Overall Ablation Study We use UFLD [28] as the base-

Attention Head CFF IFP RIoU F1 score

68.40

� 78.56

� � 79.13

� � 79.47

� � � 79.74

� � � � 79.95

Table 5. Results of the overall ablation study on CULane using

the same backbone ResNet18. The baseline of our study is UFLD

[28], where all the modules are added on it.

line, where we gradually add Attention Head, CFF, IFP, and

RIoU on it. The results of the overall ablation study are

shown in Table 5. The first row shows the result of the base-

line, which is consistent with the result of the open-source

code of UFLD. The attention head improves the F1 score

from 68.40 to 78.56, which is the most effective module of

the net. As the module is gradually added, the F1 score is

increasing simultaneously. Specifically, CFF and IFP im-

prove the F1 score by 0.57% and 0.91% respectively. The

combination of CFF and IFP is more effective for the im-

provement of the F1 score, which improves the score by

1.18%. The usage of RIoU further improves the score by

0.21%, which helps the regression of the lane line.

The visualization results of the module CFF and IFP are

shown in Fig. 6. Both the CFF module and IFP structure can

help the detection of lane lines, but the combination of the

two modules can use the finer-scale features and the global

semantics more effectively. For example, as can see from

Fig. 4.5(e), when only CFF is added to the net, it can not

detect all the finer-scale features of the image. And when

only IFP is added to the net, it neglects the global semantics

of the lane which makes it mistake the arrow as the lane

line. The combination of CFF and IFP can predict lane lines

more accurately. Our IFP can be used in other lane detection
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Figure 6. The visualization results of the module CFF and IFP. The first row denotes Ground Truth (GT). The second row to the fourth row

represents the results that only add the CFF module, results that only add the IFP module and results that add CFF and IFP modules.

Method Dilation shape Padding shape F1 score

IFPNet - - 79.72

IFPNet 3× 3 - 79.80

IFPNet 3× 3 3× 3 79.67

IFPNet 5× 5 - 79.78

IFPNet 5× 5 5× 5 79.95
IFPNet 7× 7 - 79.34

IFPNet 7× 7 5× 5 79.49

Table 6. Results of the ablation study on attention head on CULane

based on the same backbone ResNet18.

methods, results can be seen in the appendix of our work.

Ablation Study on Attention Head As mentioned in

Sec. 3.2.2, we use dilated convolution to calculate the key

and value of self-attention. The result of different shapes

of dilation and padding is shown in Table 6. The F1 score

increases with the dilation shape from 3 × 3 to 5 × 5 with

the same shape padding to keep the original shape of the

input image, which demonstrates the validity of dilation in

the attention head.

Ablation Study on RIoU The result of ablation studies of

RIoU is shown in Table 7. We use smooth-l1, LIoU [44],

and RIoU as different loss modules of the study. The only

change in each study is the weight of each loss. Tradition

smooth-l1 loss does not fully utilize the structural features

of the lane lines. LIoU loss proposed by CLRNet [44] takes

the lane line as a whole unit which is helpful for the per-

formance of lane detection. By contrast, RIoU loss is more

helpful for the regression of lane lines on the large, medium,

and large types of IFP, which demonstrates the efficiency of

our proposed RIoU loss. To further verify the effectiveness

of RIoU, we add RIoU loss to LaneATT [31] and CLRNet

[44], where we achieve improved performance. Results can

be seen in the Appendix of our work.

Loss Weight ResNet18 ResNet34 ResNet101

smooth-l1 0.1 79.56 - -

smooth-l1 0.5 79.46 79.63 79.71

smooth-l1 1.0 79.53 79.54 -

LIoU 1 79.68 - -

LIoU 2 79.74 79.61 79.95

LIoU 4 79.69 - 79.86

RIoU 0.1 79.76 79.65 80.11

RIoU 0.5 79.90 79.85 80.15

RIoU 1.0 79.95 79.80 80.19

RIoU 2.0 79.89 79.79 80.33

Table 7. Results of the ablation study on RIoU. The results are

based on IFP on the benchmark dataset CULane. The only change

in each row is the weight of each loss.

5. Conclusion
In this paper, we propose Integrated Feature Pyramid

Network (IFPNet) based on the fusion factor for lane de-

tection. To improve the accuracy of lane detection under

complex and diverse road conditions like crowded scenes

or uneven and insufficient light, we propose Classification

Fusion Factor (CFF) and IFP to further integrate finer-scale

features and global semantics. Moreover, we propose re-

gression IoU (RIoU) to measure the overlap of the pre-

dicted and ground truth lane lines, which is helpful for the

regression of curves. We test our method on three bench-

mark datasets including CULane, Tusimple, and LLAMAS,

where we achieve state-of-the-art results with both high ef-

ficiency and high accuracy.
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