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Abstract

We present an approach to bridge the gap between the
computational models of human vision and the clinical
practice on visual impairments (VI). In a nutshell, we pro-
pose to connect advances in neuroscience and machine
learning to study the impact of VI on key functional com-
petencies and improve treatment strategies. We review re-
lated literature, with the goal of promoting the full exploita-
tion of Artificial Neural Network (ANN) models in meeting
the needs of visually impaired individuals and the opera-
tors working in the field of visual rehabilitation. We first
summarize the existing types of visual issues, the key func-
tional vision-related tasks, and the current methodologies
used for the assessment of both. Second, we explore the
ANNs best suitable to model visual issues and to predict
their impact on functional vision-related tasks, at a behav-
ioral (including performance and attention measures) and
neural level. We provide guidelines to inform the future re-
search about developing and deploying ANNs for clinical
applications targeting individuals affected by VI.

1. Introduction

Vision is the principal sensory modality through which

humans collect information about the world. A visual im-

pairment can therefore have a huge impact on a person’s

life. The WHO [1] distinguishes among aspects of a vision

lack related to changes at the organ level, i.e. anatomical,

and at the person level, i.e. social and economical conse-

quences of reduced abilities. Notably, impairments to an

organ do not imply the person’s complete loss of the ability

to perform Activities of Daily Living (ADLs). Indeed, the

majority of people with impaired vision are not blind, but

in fact have residual vision [2]. The assessment of a per-

son’s ability to perform ADLs is often referred to, in clin-

ical settings, as ”functional vision”, and it is at the heart

of visual re-habilitation’s interventions. The goal of visual

rehabilitation is to manipulate environmental, medical, and

human factors in order to minimize the negative effect of

a disorder on functional vision, and ultimately to improve

the person’s participation in society and social life [3]. This

is particularly true at an early age, when the neurological

maturation is ongoing and functional abilities are develop-

ing, to prevent the onset of developmental delays and intel-

lectual disabilities [4, 5, 6]. Visual training programs aim

at teaching children how to make a functional use of their

sense of sight. They include, for instance, training to im-

prove efficient fixation, visual following of moving targets,

and eye-hand coordination [7].

The majority of visual assistive technologies for peo-

ple with VI, including applications of computer vision and

deep learning, have been developed based on the ”sensory-

substitution” paradigm, i.e. to replace the human function-

ality while performing a specific task (e.g. navigation, ob-

ject detection) [8, 9]. However, this approach disregards

the high potential of modern machine learning techniques

to be deployed within visual rehabilitation settings, and it

neglects neuroscientific findings [10, 11]. Indeed, for reha-

bilitative purposes, assistive technologies should rather en-

hance the person’s capability to access information from the

external environment exploiting his/her own resources, in-

cluding residual vision [12].

Compared to previous works, which focused on a task-

oriented classification of models for visual assistive tech-

nologies, this review offers an alternative perspective,

rooted on neuroscience, to categorize existing ANNs. We

provide an overview about how these models can be used to

develop tools to understand visual impairments, and to pre-

dict their effect on vision-related behaviors, thus supporting
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visual assessment and rehabilitation. Indeed, current ANNs

solve specific vision-related tasks, which are also relevant

in the context of visual rehabilitation (e.g. reading, object

detection, object recognition, face recognition), and their

internal representations resemble - to a first extent - primate

neural recordings [13, 14]. On the other hand, for clini-

cal and assistive applications of machine learning and com-

puter vision, it might be important to have models that are

neurally aligned. Indeed, a human-model similarity plays

in favor of ANNs’ likelihood to predict the effect of percep-

tive, oculomotor and/or cognitive issues on how the person

solves a specific functional task.

The review is organized as follows: in Section 2 we pro-

vide a categorization of VI based on how they affect visual

functions (2.1), we identify the main vision-related (func-

tional vision) skills involved in visual rehabilitation (2.2),

and the main techniques used for the assessment of both

visual functions and functional skills of subjects with VI

(2.3). In Section 3 we review existing ANNs suitable to

model behavioral outcomes (based on direct measures, 3.1,

and gaze data, 3.2), and neural outcomes (3.3) of humans

during vision-related functional tasks. In Section 4 we de-

vise future research directions to use ANNs to model VI.

2. Characterization of visual impairments
Although it is a common notion that vision refers to

the basic functioning of eyes, the visual process actually

involves the integration among different structures within

the visual system, including the eyes, the visual pathway,

the visual cortex, and other brain or cortical areas. Vision

occurs when all components of the system are intact and

functioning [15, 16]. Modern visual assessment and re-

habilitation paradigms rely on the distinction of two inter-

correlated components of vision: visual functions, i.e. the

functioning of anatomical organs (eyes and visual system),

and functional vision, which refers to the ways in which

a person ”functions” in activities that are normally vision-

dependant [17], such as reading, orientation and mobility,

object recognition and social interaction. In the following

paragraphs, we provide an overview of the different types

of VI, their effect on the main functional skills, and existing

(clinical and functional) assessment techniques (Fig. 1).

2.1. Visual functions

A description of the nature of VI from an anatomical

point of view, as well as of the pathologies leading to vi-

sual issues, is out of the scope of this review. Here, we

aim at describing the effect that VI can have on measur-

able outcomes related to functional abilities, because we

view those as most readily tackled by current computational

techniques. Starting from this idea, we identify the types of

VI according to the distinction adopted in [18]: peripheral,
oculomotor, and cerebral issues (Fig. 1).

Figure 1. Left-top: types of VI, according to which visual func-

tions are affected; Left-bottom: main functional skills affected by

a vision’s malfunctioning in ADLs; Right: assessment techniques

of visual functions and functional skills in subjects with VI.

Specifically, such a distinction relies on the (simplified)

identification of three main functions of vision that are im-

portant to predict a functional outcome; in [18], these are

described as ”seeing”, ”looking” and ”understanding”, and

can be isolated and assessed separately. According to this

framework, peripheral issues are those related to the pe-

ripheral structures of the primary visual pathways (eye, op-

tical nerve), and they directly affect the perceptual primary

component of vision (”seeing”), including functions such as

visual acuity, visual field, contrast sensitivity. Oculomotor
issues concern the oculomotor system and its functions (fix-

ations, saccades, smooth pursuit) and they affect the explo-

rative component of vision (”looking”). Finally, cerebral
issues refer to those generated by damages to the dorsal

and ventral streams [19], which affect the visuo-cognitive

abilities (”understanding”). Such categorization is not rigid,

since visual issues, regardless of their origin, can manifest

themselves at multiple levels of vision functioning. Cere-

bral issues can be associated with visual malfunctioning at

primary perceptual (visual acuity and visual field) and ocu-

lomotor level (optokinetic nystagmus, i.e. instability of fix-

ations) [20]. Generally, peripheral and oculomotor impair-

ments, even when not arising from cortical damages, can

affect the neuropsychological, social and cognitive devel-

opment, as suggested by a body of works investigating, for

instance, the (controversial) relationship between visual im-

pairments and autistic-like behaviors [21].

Nevertheless, the distinction among peripheral, oculo-

motor and cerebral issues, based on the clinical assessment

of visual functions, is useful to simulate these impairments

within ANNs architectures, and test their differential effects

on functional capabilities of individuals with VI.

2.2. Functional skills

Among functional skills that are affected by a vision

deficit, visual rehabilitation focuses on different categories

of competencies that are fundamental to enable a person’s

relationship with the surrounding environment and with
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other people, including: reading, mobility, object recogni-
tion and social skills.

Reading and mobility are two of the main skills ad-

dressed by visual rehabilitation training protocols [22],

given their obvious importance in activities of daily life.

Peripheral impairments, especially those related to central

visual field defects, are those impairing reading skills the

most. Rehabilitation includes interventions aimed at teach-

ing how to use reading aids, and training for learning possi-

ble compensatory behaviors (e.g. eccentric fixation) [22].

Since visual information is fundamental for spatial pro-

cessing, various studies have shown how the absence of vi-

sion impacts the development of locomotor skills [23, 24].

In [10], the authors present an extensive review about orien-

tation (i.e. the ability to understand the spatial properties of

the environment and its relationships with one’s position)

and mobility (i.e. the capability of efficiently and safely

moving in an environment) in adults and children with and

without visual disabilities. The authors discuss the link be-

tween the observed reduced orientation and mobility in chil-

dren with VI and the related processes in which the visual

modality is involved during development.

Many studies have documented the development of

higher cognitive functions during childhood and adoles-

cence, and they tried to correlate it with the processes of

brain maturation [25]. It is known that visual abilities sub-

tended by the primary visual cortex, such as simple shape

discrimination, are already present at the age of 6 y.o., while

higher visual abilities, such as visual object recognition,

continue to develop later in childhood [26]. Given their na-

ture, cerebral VI have been studied to investigate the link

between brain damages and an impaired visual perception

in such high-level tasks. Although some results pointed to-

wards the hypothesis of specific visual perceptual impair-

ments (object recognition) in children with cerebral VI [27],

the research outcomes are inconclusive because of limited

samples of examined subjects, the comorbidity with devel-

opmental delays, and a lack of standardized tests [28]. Ocu-

lomotor issues, on the other hand, may affect dynamic tasks

such as object tracking and visual search, due to difficulties

in holding fixations or performing saccadic movements.

The development of spatial cognition, locomotion skills,

as well as higher perceptive visual function (including face

recognition) are strictly related to the development of social
cognition [11]. Because of an impaired capability of detect-

ing social cues, i.e. body gestures and non verbal commu-

nication signals, children with VI may face difficulties in

engaging in positive social interactions [29]. They demon-

strate a low peer-related social competence [30], they do

not display a full range of play behaviors, and they spend

more time in solitary playing or interacting with adults than

with their peers [31, 32]. In [33], the authors tested patients

treated for bilateral congenital cataracts, and they found

that early visual deprivation affects the development of face

recognition. However, it seems unclear to which extent a

lack of visual experience can affect the capability of pro-

ducing emotional facial expressions [34].

2.3. Assessment techniques

The assessment of both visual functions (how the eye

and the visual system function) and functional vision (how

the person ”functions” on visual tasks) is the core of vi-

sual rehabilitation [3]. The relationship between these two

allows to plan appropriate interventions and to verify the ef-

ficacy of a training protocol over time. As reported in Fig.

1, we take into account behavioral and neural measure-

ments. Among behavioral measures, we distinguish among

”direct” measures, i.e. task-related answers actively pro-

vided by the subject or performance measures, and ”gaze”
measures, i.e. indirect task-related measures based on eye

movements. In the following sections, we review the cur-

rent application of these techniques to the assessment of

either visual functions (perceptual, oculomotor and visuo-

cognitive) or functional vision-related skills (i.e. reading,

mobility, object recognition and social interaction).

Visual Functions’ Assessment: Visual and oculomo-

tor functions are assessed by clinical tests, carried out by

professionals. Such measures can be used both to assist in

the diagnosis of the underlying disorder and to predict the

functional consequences. Visual acuity (VA) is the most

common metric for quantifying a subject’s global visual

functions. Indeed, even if a low VA can result from differ-

ent disorders, it provides a good indicator about the impact

of the person’s ability to perform ADLs, e.g. reading [3].

Other visual functions commonly assessed include visual

field (VF) and contrast sensitivity (CS) [35]. These metrics

can be measured either with behavioral methods (e.g. read-

ing chart for VA), where the subject needs to provide a ver-

bal or behavioral answer to a stimulus, or neural methods

(e.g. neural activity recordings) [36]. Eye-tracking tech-

niques have been explored as an alternative to traditional

visual functions assessment methods based on clinical eval-

uations, to provide a quantitative assessment both for pri-

mary perceptual functions (e.g. visual field, contrast sensi-

tivity) and oculomotor functions (e.g. nystagmus, fixation,

saccades, smooth pursuit) [37, 38]. Although the vast ma-

jority of studies assess visual functions through behavioral

methods, neural methods such as pattern steady-state visual

evoked potentials (VEP) are used in case of infants or cog-

nitively impaired subjects. Since cerebral issues can cause

defects in higher visual perceptual functions (i.e. there can

be an impaired perceptual functioning in presence of normal

acuity), neuro-imaging techniques are more appropriate to

characterize visual functions in such cases [39].

Functional Vision Assessment: Functional vision is as-

sessed by the ability to perform generic ADLs. The func-
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tional vision is typically assessed in two ways: 1) by de-

veloping systems for correlating visual functions’ measure-

ments to statistical estimates of functional abilities, or 2)

by directly assessing such individual abilities. A recent ex-

ample of the first approach is shown in [18], where the au-

thors propose a novel protocol for visual functions’ quan-

titative evaluation based on professional reporting (Visual

Function Score). The system provides a global score of a

subject’s visual functioning, useful to monitor rehabilitation

outcomes. The second approach is usually qualitative and

takes the form of questionnaires in which the subject, the

family and/or clinicians rate the ability to perform a series

of ADLs [40, 41, 42]. Functional skills of subjects with

VI have been also evaluated quantitatively, for instance, to

assess the effectiveness of image enhancement techniques

during reading, object detection/recognition, face/emotion

recognition [43], or to determine the correlation between

measures of VA and CS and the performance on ADLs, e.g.

mobility speed and reading speed [44]. The assessment of

various aspects of the social development on people with

VI lacks of a unified definition of ”social skills”, and it has

been mainly based on qualitative behavioral observations

and questionnaires [45]. In contrast, quantitative behav-

ioral approaches to eye analysis and gaze tracking have been

widely used to investigate different aspects of social atten-

tion and social skills in children with Autism Spectrum Dis-

orders [46]. Nevertheless, to our knowledge eye tracking

has not yet been used to assess functional skills of people

with VI, except one study investigating visual information

processing in children [47]. Likewise, no eye tracking study

investigated the onset of atypical behavioral patterns (i.e.

the correlation between visual peripheral/oculomotor im-

pairments and the emerging of autistic-like features [21]).

Finally, neural measures (fMRI) were mainly used to inves-

tigate the relationship between visual functions (including

object recognition, face recognition, visual memory, orien-

tation, visual spatial perception, and motion perception) and

cerebral visual impairments [28]. In a few cases, neural

measures have been used to assess the functional outcome

of visual training, e.g. in [48], VEP were used to assess the

effectiveness of visual rehabilitation in improving obstacle

detection skills of a child with severe VI.

3. ANNs to model visual impairments
Visual rehabilitation and computer vision share similar

goals: improving human and model performance respec-

tively, on a set of visual (functional) tasks. In this section,

we review different ANN models, and we discuss the prop-

erties that make them good candidates to model VI, i.e. to

predict behavioral (including direct and gaze measures) and

neural human outcomes on visual tasks.

The conceptual framework underlying this approach is

inspired by the work in [13, 49], and shown in Fig. 2. It

is based on defining a common framework for the eval-

uation of both human and models’ performance on key

functional vision-related tasks, by identifying suitable and

standardized experimental protocols and stimuli datasets.

The goal is to generate large benchmark datasets of behav-

ioral (including direct and eye-tracking measures) and neu-

ral measures from both typical subjects and subjects with

VI, enabling a quantitative assessment of functional vision

skills. This approach requires a close collaboration among

researchers working in the fields of computer vision, com-

putational neuroscience, people with VI, and clinicians. We

define ”Functional Vision Score, FVS” as the performance

of a subject with VI compared to the baseline performance

of typical subjects. The definition of common practices to

label data from people with VI with metadata reporting clin-

ical assessment of visual functions, together with the as-

sessment of FVS on standardized tasks and techniques, are

crucial aspects to model VI. Notably, efforts to model vi-

sual behaviors and neural mechanisms in neurotypical sub-

jects are already underway [13], but models in humans with

VI are missing. We believe that the directions proposed

here would synergize well with existing efforts by adding

behavioral and neural data from subjects with VI to guide

and constrain model development, and conversely by mak-

ing use of the leading models for typical vision.

3.1. Modeling direct behavioral performance

Current ANNs solve a range of visual tasks easily over-

lapping with those listed in 2.2. In the following sections,

we will focus on lower level visual tasks, leaving aside read-

ing and mobility. Indeed, reading and mobility applications

of ANN models are mainly oriented at replacing the active

role of the user with VI (e.g. [50] and [51]). At the same

time, complex tasks such as navigation are composed by

lower level visual tasks, i.e. object recognition and tracking,

face recognition, pose estimation, and action recognition.

CNNs architectures: Until the recent advent of Trans-

formers, CNNs stood out as the best deep models to solve

visual tasks. Certain models in the 2010s (e.g. [52, 53, 54,

55, 56]) reached human-level performance in certain im-

age classification tasks. Subsequent evolution led to the de-

velopment of derived frameworks to solve object detection

[57] and semantic segmentation [58] tasks, as well as image

retrieval (which implies a visual search ability in humans)

and pose estimation [59]. Particular CNNs have been con-

sidered for several years the state of the art for visual tasks.

Their success was explained by their inductive biases, in-

cluding translation and equivariance, inspired by the pri-

mate visual system [60, 61]. At the same time, CNN layers’

activations have been used to explain neural measurements

in the primate visual system [62, 63, 14].

Transformers architectures:Recently, another type of

artificial network gained extreme popularity, which is not
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Figure 2. Conceptual framework for developing ANN models of visual impairments (inspired by [13, 49]). The central idea is to identify

visual tasks and stimuli datasets that can be used to functionally assess and benchmark both humans’ and models’ performance (left side).

The collection of behavioral (including direct and gaze measures) and neural data from typical and visually impaired subjects (green arrows)

will allow the construction of benchmarks for the definition of a ”functional vision score (FVS)”, quantifying the functional differences

among individuals with and without VI in vision-related tasks (right). ANN models can be used simulate the effect of a specific visual

impairment on behavioral and neural outcomes. The alignment to human data can then be tracked on behavioral and neural measures (blue

arrows).

based on convolution and does not include architectural in-

ductive biases towards local spatial structures. Transform-

ers, mainly based on the mechanism of self-attention, i.e.

learned allocation of attention, were first introduced in the

context of natural language processing (NLP), achieving

significant improvements in various NLP tasks [64, 65].

They were soon translated to vision applications [66] and

are now considered a powerful alternative to CNNs and re-

current neural networks. Indeed, they achieved exceptional

performance in different visual tasks such as image classi-

fication [66], object detection [67], semantic segmentation

[68], and pose estimation [69]. Furthermore, thanks to their

capability of modeling sequences, Transformers were ap-

plied in a number of video tasks, including action recogni-

tion [70]. Recent surveys of vision Transformers, catego-

rized based on the visual task complexity can be found in

[71] and [72]. Transformers architectures for action recog-

nition are specifically reviewed by [73].

Model-Human comparison: ANNs performing visual

tasks at a human level is a useful [62, 74] but not sufficient

condition to use such models as a tool to investigate the

mechanisms (cognitive and/or neural) through which hu-

mans perform the same visual tasks. Indeed, the model’s

mechanisms allowing to achieve a certain performance need

to be investigated as well, to check for similarities or dif-

ferences compared to humans. Previous research explored

various approaches to investigate such human-models sim-

ilarity, e.g. analyzing the model classification output on

its match to human behavioral output, in behavioral com-

parisons. For example, [75] and [76] introduced metrics

to quantify whether two decision-making systems yield the

same outputs on the same inputs and make the same mis-

takes. Models performing better on image classification

tasks are generally more consistent with human behavior

[75, 14, 76, 77] (but see also [78]). The alignment of

CNNs and Transformers with human attention and neural

processes is further discussed in the next paragraphs.

3.2. Modeling gaze-based attention

Attention is a key aspect both for visual rehabilitation

and as a tool to interpret decision mechanisms of ANNs.

Some authors stressed that changes in behavior and visual

attention, rather than the change of brain and visual func-

tions, is the true goal of visual rehabilitation [79], and that

”looking” (i.e., acquired skill of paying attention to what is

seen), not ”seeing” (i.e., light sensation and transportation

to the brain) should be stimulated [80]. At the same time,

a change in attention behavior, assessed by gaze data col-
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lection, may reflect atypical behavioral development (as it

is the case for autism) [21]. Therefore, ANNs incorporat-

ing attention mechanisms, i.e. some strategy to weight the

input based on task-related high-level features, are an inter-

esting resource to investigate the model capability of cap-

turing human-like strategies to solve complex visual tasks.

This research approach is significant towards development

of clinical applications of computer vision based on gaze

measures, e.g. for the early detection of cognitive impair-

ments, as well as in visual rehabilitation, to investigate the

effect of primary perceptual impairments (e.g. peripheral

VI) on cognitive development.

Bottom-up and Top-down attention: The computa-

tional modeling of gaze-based visual attention is typically

addressed by bottom-up and top-down processing [81]. The

first considers attention driven by the stimulus’ low level

visual features (color, contrast). This was the mainstream

approach so far, and led to the development of saliency

models. The advancement of ANNs and the availability

of an increasing number of human gaze dataset bench-

marks [82, 83, 84] led to the development of numerous

models that are able to predict human fixations on images,

mainly during free viewing tasks [85, 86, 87]. The sec-

ond mechanism of attention is the top-down or endogenous

one, i.e goal-directed attention. Since it is an internally

induced process based on prior knowledge, it is more sig-

nificant than bottom-up attention when investigating cogni-

tive mechanisms underlying behavioral observations [88].

Human gaze data is the most common type of measure-

ment to test attentional mechanisms implemented in mod-

els. Currently, most of available gaze datasets are not re-

lated to goal-oriented tasks, even though some recent re-

search points towards this direction (e.g. [89] published a

visual search dataset). Besides saliency models, gradient or

attribution methods [90] are used to generate heatmaps indi-

cating local relevancy given by a model to the input image.

Interpretability of attention: Evaluating the similarity

of a saliency model to human behavior is still an open chal-

lenge. In [91], the authors propose some means of com-

parison applied to different evaluation metrics to improve

interpretability of saliency scores. Different variants of at-

tention have different interpretability properties. To test in-

terpretability, there is a need to provide a definition of ”im-

portance” (e.g. highest attention weight should identify the

most influential representation in pushing towards the out-

put class), define the threshold for the model to switch de-

cision (especially in large output spaces, not only limited to

few classes), and to evaluate more than one layer of atten-

tion [92]. While the majority of works on visual saliency

focused on static images, some studies investigated how to

understand and model visual attention over dynamic scenes

(video saliency). For instance, [93] presents a CNN-LSTM

architecture augmented with a supervised attention mecha-

nism to learn temporal saliency representation across suc-

cessive frames. However, artificial attention does not al-

ways align with human intuition. In [94], the authors tested

the consistency between a set of representative ANNs with

soft attention mechanisms, and human top-down attention

based on gaze data, considering three tasks: saliency object

segmentation, video action recognition, and fine-grained

categorization (see [95] for an extensive survey on atten-

tion methods in deep learning, and [96] for a classifica-

tion of attention mechanisms in deep learning based on data

domain). They concluded that human attention can serve

as a meaningful ground-truth for lower level tasks, when

a higher artificial-human similarity leads to better perfor-

mance, while this is non always the case for higher-level

vision tasks. In other words, the comparison between mod-

els’ attention and gaze data could be meaningful for visual

sub-tasks, but less informative for general high-level tasks,

i.e. gaze data represent the sub- visual goals of an overall

complex visual task, but may not be informative about the

overall strategy.

Besides using human gaze as a ground truth to evaluate

models’ attention, some works explored the integration of

gaze as a supervisory signal to guide neural attention mech-

anisms, e.g. for NLP [97] or object grasping [98]. Here,

gaze data is used directly to make artificial attention more

human-like. In the majority of cases, such design choice

is motivated by the belief that a human-like attention also

leads to improved performance and/or higher interpretabil-

ity of network’s decision mechanism. However, this is not

always the case: e.g. [92] found that attention weights are

noisy predictors of the importance of the input’s intermedi-

ate representations in a text classification task.

Neurally inspired models of attention: Most of the

computer vision approaches mentioned above bear no re-

semblance to the neurophysiological architecture of visual

cortex. Rather than endeavouring the design of a human-

like attention mechanism, the authors in [99] proposed a

biologically inspired architecture to gain insight into the

mechanisms that guide visual search. Their approach

takes steps from neurophysiological knowledge about vi-

sual search, which is likely to happen in the form of a

task-dependent modulation originating in the frontal cortex

[100]. The proposed model provides an approximation to

the mechanisms integrating bottom-up and top-down sig-

nals during search in natural scenes. Another difference be-

tween attention/search mechanisms in artificial models and

humans is that typically ANNs process images with space-

invariant resolution, contrary to the human visual system,

where acuity drops rapidly from the fovea to the peripheral

regions of the retina. Attempts of implementing human-

like models to predict the fixations’ scanpath, i.e. foveation

mechanism, recently emerged [101].

Transformers’ attention: In contrast to CNNs, Trans-
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formers embed a self-attention mechanism within their

backbone architecture. Attention was indeed the architec-

tural feature that boosted the performance of these models

on many NLP and visual tasks. It is therefore of much in-

terest to interpret their decisions, and this is currently an

open problem. A common practice is to consider the learnt

self-attention values to visualize a Transformer’s relevancy

score, either for a single layer, or averaging them on mul-

tiple layers. However, this often results in a not mean-

ingful visualization since the attention originating in each

layer gets inter-mixed in subsequent layers in a complex

manner [72]. In [90], the authors showed how simplis-

tic assumptions (e.g. attention roll-out and attention flow

methods) miss to consider different roles of different layers

(e.g. deeper layers are more semantic) and they proposed a

method to maintain the total relevancy across layers, which

also includes the property of class-based separation by de-

sign (i.e. different visualizations for different classes). Sev-

eral papers addressed the following question: is attention

in Transformers comparable to the human attention? For

instance, [102] compared human attention (based on gaze

data) and neural attention for CNN, LSTM and Transformer

networks, on a reading comprehension task. While finding

the best performance for the Transformer architecture, the

authors determined that it was not correlated with higher

similarity to human attention (while this correlation held

for CNN and LSTM). On the other hand, [103] found that

large language models are predictive of human eye fixations

during task-specific reading, in a comparable way as clas-

sical cognitive models of human attention. Such correla-

tion between Transformers learnt self-attention and overt

human attention (assessed with gaze data) during reading

tasks is supported also by [104]. Compared to the language

domain, few studies investigated the correlation between

neural and human attention in visual Transformers. Re-

cently, [105] disputed the similarity between Transformers’

and human visual attention, arguing that, from a computa-

tional point of view, the purely feed-forward attention’s ar-

chitecture in Transformers (not affected by higher-level fac-

tors) performs similarity grouping of visual features, only

capturing bottom-up signals. Human visual attention is, in

turn, known to be modulated by bottom-up and top-down

mechanisms that in early stages of visual processing, al-

low to organize the perceptual visual input to figures and

ground. They conclude that the quest for a computational

model that implements human-like visual attention mecha-

nisms has not come to an end with current Transformers.

3.3. Modeling neural processes

Modeling neural processes and neural differences in

presence of perceptual or cognitive impairments is cru-

cial for gaining a deeper understanding of each specific is-

sue, and to develop assistive and rehabilitation technologies

rooted in neuroscientific findings. With regards to VI, this is

especially valuable for subjects with cerebral issues, where

perceptual defects originate from brain damage.

Animal models: Animal models, specifically non-

human primate models, have been the main source of data

for modeling visual cortex. The convolution operation of

CNNs, which boosted the performance of computer vision

to and above human level in tasks such as object catego-

rization, has a neurobiological basis, and draws its inspira-

tion from the visual processing mechanism of the primate

early visual cortex [60, 106]. This was enabled by the fact

that non-human primates have a similar developmental pro-

file, including the development of visual functions, as well

as a similar visual system organization and level of vision,

compared to humans [107, 75]. Animal models of the vi-

sual cortex have also been used to identify the causal mech-

anisms underlying some types of cerebral visual impair-

ments, e.g. amblyiopia, a sensory developmental disorder

impacting the structure and function of the visual pathways

beginning at the level of the visual cortex. In [108], the au-

thor reviews how data generated from macaque models pro-

vided useful insights about the neural mechanisms underly-

ing amblyopia, and how such findings are consistent with

critical periods and treatment strategies in children with this

type of cerebral visual issue.

Brain-like networks: Given the success of models such

as CNNs, which are known to have many brain-like prop-

erties, it is natural to question whether models performing

well in visual tasks, such as recent Vision Transformers,

also show human-like properties. Indeed, it is of great in-

terest to investigate the potential of brain-like features to

scale up the ANNs performance. To date, few works ad-

dressed these questions. In particular, [14] introduced a new

large-scale composite of neural and behavioral benchmarks,

called Brain-Score, for quantifying the functional fidelity,

i.e. how similar an ANN is to the brain’s representations

in the primate ventral stream as well as to human behav-

ioral measures. They demonstrated that better neural and

behavioral alignment correlates with higher model perfor-

mance on ImageNet, a popular computer vision benchmark.

Subsequent work attempted to make the model architecture

more similar to the brain’s neuroanatomy, e.g. by including

recurrent connections [74, 109]. In [13], the authors pro-

posed to extend this approach to the development of inte-

grative benchmarking platforms putting together large-scale

brain and behavioral data in the form of accessible bench-

marks, and computational models that aim to explain these

data. The goal is to push forwards the development of mod-

els explaining intelligence in various domains beyond vi-

sual intelligence, e.g. language and motor control. In [49],

the authors applied this approach to an higher-level cogni-

tive task, i.e. human language processing. They found that

particular Transformer models such as GPT2-xl are predic-
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tive of neural responses across different recording modal-

ities and datasets (fMRI and ECoG), and that models’ fits

to behavioral responses are correlated with both neural fits

and accuracy on the task of predicting the next word. In

a similar vein, in [110], different models, including CNNs

and ViTs, were evaluated in their capability to predict neu-

ral activities of the human visual cortex, considering as a

metric the alignment among model layers and visual re-

gions. Similarly, [111] evaluated the brain-like properties

of different types of models, including CNNs, Transform-

ers, and their hybrids. The evaluation focused on the ability

of the networks to explain brain activity on the human vi-

sual cortex (based on two neural fMRI datasets), and the

hierarchical correspondence of ANNs and visual regions.

They found that both CNNs and ViTs show hierarchical

correspondences to the ventral stream, but neither one is

an optimal paradigm to model the visual pathway (even if

CNNs perform better on the entry-level and mid-level visual

cortex, while ViTs perform better on the higher visual cor-

tex). Critics of the above-mentioned approaches were em-

boldened by [112], arguing that most behavioral and brain

benchmarks for testing models’ alignment to human data do

not account for the findings and hypotheses from psycho-

logical research. Including psychological findings seems in

the spirit of Brain-Score [13] which aims to integrate be-

havioral and neural datasets for models’ evaluation.

Impaired models: Neurally plausible models could

help to disentangle the reasons behind failures in solving

a specific visual task. In [113], the authors presented a

method to impair a Transformer language model by de-

liberately modifying parameters in specific layers of the

model self-attention, to generate text with characteristics

associated with Alzheimer’s disease. By pairing such a de-

graded model with its unimpaired counterpart, they discrim-

inate between language produced by cognitively healthy

and impaired individuals, relaxing the need of large train-

ing datasets (which are notoriously harder to build and/or

retrieve for impaired categories of subjects than for healthy

ones). We believe that such an approach would also be

useful in the context of visual impairments. Furthermore,

neurally aligned ANNs are likely to be more readily us-

able to model VI. Specifically, starting from a model that

is aligned with data from neurotypical subjects, particular

VI could be induced in the ANN that aim to replicate the

same behavioral change we observe between people with

and without VI. Such impaired models could be used as

in-silico testbeds to unravel representational and behavioral

changes in individuals with VI. Besides understanding hu-

man differences in visual tasks in presence or absence of VI,

the comparison between unimpaired/impaired ANNs could

also help to better interpret the inner working of the models.

4. Limitations and future directions
There are several limitations towards using ANNs as ef-

ficient models of VI. While current ANNs are now consid-

ered adequate models of several visual behaviors and the

neural mechanisms underlying them [13], (i) they have yet

to capture complex functional tasks that are crucial for the

development and daily living of humans, e.g. social interac-

tions. One crucial shortcoming is (ii) a lack of standardized

tasks, large-scale stimuli and extensive data benchmarks for

the assessment of models in tasks related to human social

skills [114]. Furthermore, (iii) neural systems associated

with cognitive and behavioral processes involved in social

situations are far from being understood. The computa-

tional modeling of such processes will enable detecting, and

aiding various social impairments, even beyond VI [115].

Using ANNs to understand VI is hampered by (iv) the

difficulty or retrieving large-scale data from groups of im-

paired subjects. To tackle this, we encourage the definition

of common experimental paradigms and integrated public

data benchmarks to improve the availability and accessibil-

ity of data from subjects with VI. At the same time, mod-

eling these data with ANN ”impairments” could connect

peripheral or neural deficits with behavioral outcomes, and

provide a rapid in-silico testbed for treatment strategies.

Computer vision and ANN techniques can be used at

several stages of diagnosis, treatment, rehabilitation, and as-

sistance of VI people. Here, we focused on applications for

visual assessment and rehabilitation, and we highlighted the

need for a closer connection between computer vision sci-

entists and clinical practice. Indeed, a deeper collaboration

with operators working in the field of rehabilitation is a cru-

cial step for closing the gap between the two domains for

the development of effective tools.

5. Conclusions
This review provides computer vision scientists with a

high-level background to approach the field of technolo-

gies for visually impaired people. It also provides cogni-

tive neuroscientists and researchers investigating impaired

vision with the vocabulary to interact with machine learn-

ing practitioners. We demonstrate the complexity of VI and

their consequences on key functional abilities, and provide

useful guidelines to inform choices about how to develop

and apply ANNs to effectively support clinical practices in

the field of visual rehabilitation.
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