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Abstract

Face authentication is a widely used technique for ver-
ifying identity, but current approaches encounter limita-
tions due to their reliance on extensive computing re-
sources, large datasets, and well-lit environments. Addi-
tionally, these approaches often lack adaptability to ac-
commodate new individuals and continuously improve per-
formance. These constraints make them impractical for
various edge applications such as smart home security,
bio-metric, surveillance system, etc. To address these
challenges, this paper introduces a novel technique called
FewFaceNet, which leverages a very lightweight few-shot
learning-based incremental face authentication. Unlike ex-
isting methods, FewFaceNet employs a shallow lightweight
backbone model that can start work with just one face
image and also can handle infrared images in dark envi-
ronments. These features make it highly suitable for de-
ployment on small-edge cameras like door security cam-
eras. We curated a diverse dataset from various reliable
sources, including our own infrared camera to train and
evaluate the model. Through extensive experimentation,
we assessed the performance of FewFaceNet with different
backbone ablation studies across one-shot to five-shot sce-
narios. The experimental results convincingly demonstrate
the effectiveness of FewFaceNet in overcoming the limita-
tions of existing approaches. The code and data available
at: https://github.com/Sufianlab/FewFaceNet.

1. Introduction

Due to the rapid transformation of lifestyles, the trend of

getting services at home or apartment is becoming increas-

Figure 1. A working scenario of proposed FewFaceNet.

ingly common1. Different service personnel such as deliv-

ery personnel, electricians, plumbers, technicians, house-

keepers frequently visits consumer’s home or apartment.

Consequently, there is a growing need for security checks

and enhanced authentication at the doors of houses or apart-

ments [13]. Automated face authentication at doors shall

be a solution, and this could be done in collaboration with

respective service providers such as online shopping plat-

forms, food delivery applications, home appliance mainte-

nance agencies, etc., who send their service personnel to

consumers’ homes as a scenario depicted in Figure 1.

While numerous automated face authentication methods

have been proposed [26, 4, 10], most of them primarily rely

on large databases, a predefined number of classes, high

computing resources, and well-illuminated environments,

also scopes of continuous performance improvement were

not considered. Moreover, as the field of security check-

1https://www.grandviewresearch.com/industry-analysis/online-on-

demand-home-services-market-report.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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ing advances, particularly in relation to face authentication

mechanisms at doors, several important factors need to be

considered. Firstly, it is not practical the creation large

databases containing multiple images of home service per-

sonnel. Secondly, since the number of on-demand home

services as well as the number of personnel associated with

these businesses are increasing day by day, the number of

classes in the system cannot be fixed. Thirdly, maintaining

a well-lit environment at doors is neither practical nor con-

venient. Fourthly, it is essential to continuously enhance the

performance of the face authentication model through feed-

back mechanisms. Last but not least, it is important to ac-

knowledge that not every household has access to high-end

computing devices or cloud services, making affordability

a key consideration.

Developing a useful face authentication system at doors

should address the above challenges. Therefore, we pro-

pose FewFaceNet, a technique to deal with such challenges.

Figure 1 illustrates an application scenario of FewFaceNet

through a door security camera. When a consumer book a

home service, they will receive an image of the authorized

service personnel. The FewFaceNet algorithm-based sys-

tem will authenticate the in-person visit of the authorized

service personnel with that image and door camera.

We aim to develop a practical solution to the challenges

encountered in face authentication systems used in home

security solutions. FewFaceNet is designed using few-shot

learning, operates in low-light environments, and its suit-

ability for small edge cameras makes it a promising ad-

vancement in face authentication techniques. FewFaceNet

has been extensively studied including ablation studies with

the following key contributions:

1. Novel Lightweight Backbone Model: The Few-

FaceNet model integrates a novel backbone network,

enabling resource-friendly execution. The model con-

sists three parallel branches of five layers. The pro-

posed backbone model contains only 1.3 million pa-

rameters (Only 12% compare to classical ResNet 18

[14]). This feature is particularly beneficial for small-

edge devices such as door security cameras.

2. Incremental few-shot approach: The proposed Few-

FaceNet model is capable of working with a single im-

age, leveraging the state-of-the-art Siamese network

[7, 29]. Our experiment considered one to five shots

to asses the incremental performance improvement but

compromising the response time of the authentication.

3. Work with dynamic datasets: Initially, the support

set contains a single image of the incoming service per-

son sourced from the agency’s online platform. As the

person arrives, additional images can be included in

the support set through the door security camera once

that query image is successfully authenticated. For

new service personnel, a new class will be created.

4. New query dataset: We develop two different types of

working query datasets. One is by taking RGB images

from several reliable sources. Second, we created a

dataset containing images captured by an infrared cam-

era with the help of a group of volunteers to assess its

suitability to work in low-light environments.

The rest of the paper is organized as follows: Section

2 presents a brief literature review. We present the pro-

posed methodology in Section 3. Experimental results can

be found in Section 4. Section 5 presents the discussion

as well as the future scopes of our experiment. Finally, we

conclude in Section 6.

2. Literature Review
Face recognition and authentication have recently

emerged as prominent applications of artificial intelligence,

particularly within computer vision and image processing

domains. The literature in this field is extensive and con-

stantly evolving. In this section, we highlighted some recent

works that are relevant to the proposed model.

One popular approach is the eigenfaces-based method,

which utilizes Principal Component Analysis (PCA) to ex-

tract significant facial variations from datasets. However,

recent eigenfaces-based methods [49, 32, 39] are yet to

overcome the challenges of handling variations in lighting

conditions. Another popular technique is Fisherfaces which

employs Linear Discriminant Analysis (LDA) to find a low-

dimensional subspace that maximizes the ratio of between-

class to within-class scatter. However, like previous meth-

ods, recent Fisherfaces-based methods [3, 36] are also sen-

sitive to lighting variations. Texture-based approaches such

as Local Binary Patterns (LBP) have also been widely used

in face recognition methods [11, 45, 20]. LBP encodes local

pixel comparisons to represent facial patterns but has lim-

ited capability to capture global spatial information. Gabor

wavelets-based methods [25, 24, 1] leverage Gabor filters

and these methods are suitable for faces with different ori-

entations and scales. However, the computational complex-

ity of these methods is high.

Deep Learning (DL) methods gained popularity due

to their capabilities and data-driven facilities. Convolu-

tional Neural Network (CNN)-based methods [17, 50, 10]

and Generative Adversarial Network (GAN)-based methods

[51, 19] have been extensively used for face recognition and

authentication. Several specialized DL approaches for face

recognition like FaceNet [42], ArcFace [9], and DeepFace

[37] have also been proposed [47, 35, 12]. Although deep

learning-based methods perform very well, these methods

necessitate substantial amounts of data and significant com-
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Figure 2. The working procedure of FewFaceNet.

puting power, making their deployment on edge devices

challenging.

Researchers also explored various contemporary and hy-

brid approaches. For instance, methods based on 3D data

[27, 15], infrared data [23, 2], multimodal fusion [46, 6],

etc. Transformer models [30, 44] have also been utilized

for face recognition. Recent contemporary methods include

elastic margin loss-based deep face recognition [5], spher-

ical confidence learning [28], universal representation and

quality assessment [34], and quality adaptive margin [21].

Some methods combine traditional and DL approaches for

improved recognition [45], while ensemble techniques have

been used in others [8, 31] to get combined strength of dif-

ferent models. Recently, meta-learning and few-shot learn-

ing methods based such as Siamese Networks have been

studied for face recognition and authentication [16, 43, 48].

The number of research works based on door-based face

authentication or recognition is limited, with only a few re-

lated works proposed in [40, 33, 52, 41, 38]. However, these

works primarily concentrate on traditional bio-metric appli-

cations, intelligent door lock systems, etc.

To the best of our knowledge and on existing literature

review, no prior research has introduced an incremental

few-shot learning technique specifically designed for face

authentication or recognition that effectively operates with

just a single image as input and which is suitable for edges.

3. Proposed Methodology

The operation of FewFaceNet, as illustrated in Figure 4,

begins with the design and training of our proposed ensem-

ble lightweight DL-based backbone network. This back-

bone network is trained using our curated dataset of facial

images. We experimented with different backbone mod-

els including ablation studies towards the proposed novel

lightweight backbone model. Subsequently, the trained

model is utilized to develop the proposed FewFaceNet,

which leverages few-shot learning techniques. During the

authentication process, FewFaceNet compares the similar-

ity between a query image and the support images.

3.1. Dataset

3.1.1 Data Collection

Training Dataset:
We compile the training dataset for the proposed Few-

FaceNet model by taking data from three different sources.

Each of them is briefly described below. First of all, to op-

timize the training process for meta-learning, we refine the

dataset by selecting a maximum of twenty images for each

class and discarding classes with fewer than three images.

1) Labelled Faces in the Wild (LFW) Dataset: This

dataset2 was created and maintained by a group of re-

searchers at the University of Massachusetts, Amherst. It

contains 13,233 facial images of 5,749 individuals. The im-

ages were collected online and processed using the Viola-

Jones face detector. Notably, 1,680 individuals have multi-

ple distinct photos in the dataset.

2) Pins Face Recognition: This dataset3 contains facial

images collected from a social media platform Pinterest4

and cropped for face recognition purposes. It includes 105

celebrities and a total of 17,534 faces.

3) The ORL Database of Faces: The ORL Database of

Faces5 was utilized in a face recognition project conducted

in collaboration with the speech, vision, and robotics Group

of the Cambridge University Engineering Department. This

database contains ten different images of each of the 40

distinct subjects. The images were captured under vary-

ing conditions, such as different lighting, facial expressions

(open or closed eyes, smiling or not smiling), and facial

details (with or without glasses). All images were taken

against a dark homogeneous background, with subjects po-

sitioned upright and frontal, allowing for slight side move-

ment.

Test Dataset:
We use two test datasets to evaluate the proposed Few-

FaceNet technique in our experiment.

Test dataset 1: This dataset is constructed from the same

distributions as the training set, but the splitting is per-

formed prior to training. For our experiment, we consider

10 classes ranging from one shot to five shots. In each

class, we utilize 20 images to obtain average authentication

scores.

Test dataset 2: Our infrared dataset:
In addition to the previously mentioned sources, we cre-

ated a test dataset consisting of infrared facial images. We

selected a small group of cohorts consisting of 10 volun-

teers participating in the data collection process. Continu-

2https://www.kaggle.com/datasets/jessicali9530/lfw-dataset
3https://www.kaggle.com/datasets/hereisburak/pins-face-recognition
4pinterest.com
5https://www.kaggle.com/datasets/tavarez/the-orl-database-for-

training-and-testing
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ous video recordings were captured using an infrared night

vision-based home security camera in a dark environment.

Subsequently, we utilized OpenCV to extract facial images

from the video feeds, resulting in the construction of this

test dataset. We did not use these images for training the

model to understand its generalizability without retraining.

3.1.2 Pre-processing of data

As mentioned, we compile three datasets from three differ-

ent sources to create our training dataset. During training,

we follow the following pre-processing steps to normalize

our training samples before feeding them to the model:

1) Transform the raw images into grayscale images. 2)

Resize all images to a width and height of 100 pixels, en-

suring uniform dimensions. Additionally, to enhance the

model’s prediction ability with night vision images from

our infrared dataset, we applied Adaptive Histogram Equal-

ization (AHE) during the testing phase. The utilization of

AHE noticeably improved the model’s performance. AHE

redistributes the intensity values in the image, resulting in

improved visibility of details that may be concealed in re-

gions with low contrast. This technique brings out delicate

structures, edges, and other crucial features that are vital for

night vision applications.

To address the problem of data scarcity, we employ data

augmentation techniques. These techniques generated mod-

ified versions of existing images, effectively increasing the

size of the training dataset.

We utilize the following augmentation techniques: 1)

Randomly rotate the image by a specified angle within the

range of ±15 degrees. 2) Randomly flip the image hori-

zontally with a 50% probability, introducing diversity in the

training data. 3) Randomly crop and resize the image, with

a crop size of 100×100 pixels and a scale range from 80% to

100% of the original image size. 4) Apply random changes

to the image’s color, including brightness, contrast, satura-

tion, and hue. The specified values determine the range of

variation for each attribute.

3.2. Architecture of the Backbone Model

We encounter various challenges while using the classi-

cal Siamese network [22]. In addition to that, for a deep

model, the cosine distance for positive and negative is be-

comes small, so, chances becomes very high to either over-

fit or collapsed. Thus we develop a novel architecture to

overcome those issues. The key feature of our model is a

shallow tree-like structure as shown in Figure 3 that offers

several benefits, such as: 1). Very lightweight, only 1.3
M parameters which is highly suitable for edge camera.

2). Increased data modeling capacity enabling the network

to learn more complex and nuanced relationships in input

images. 3). Hierarchical feature extraction allows the net-

Figure 3. Architecture of the Backbone Model.

work to capture fine-grained and high-level features, lead-

ing to more comprehensive representations of the inputs.

4). The hierarchical nature of this architecture also allows

shared computations and parameter sharing at different lev-

els, reducing redundancy, improving computational effi-

ciency, and enhancing the network’s discriminative power.

The tree-like parallel subnetworks allow multiple path-

ways for gradient flow. As gradients propagate through

different subnetworks, they encounter different sets of pa-

rameters and operations. This path diversification helps to

avoid vanishing or exploding gradients because even if

one pathway suffers from these issues, other pathways may

still carry meaningful gradients.

Our model’s core building blocks consist of multiple

layers of node modules, which collectively form a com-

pact ensemble model. Each node contains three parallel

branches, each inspired by different state-of-the-art archi-

tectures. Each layer in the model’s architecture consists of

3i node modules, where i represents the layer number. This

allows us to create a model with the exponential growth of

node modules with layers.

The first branch comprises a single 3 × 3 convolutional

layer and a ReLU activation unit. The second branch draws

inspiration from the ResNet architecture [14]. Here, we

addresses the vanishing gradient problem through identity

shortcuts. It begins with a 3 × 3 convolution, followed

by batch normalization and a ReLU activation. The out-

put is then convoluted sequentially through two lightweight

residual blocks. Finally, the extracted feature maps of those

blocks was further convoluted using a 3 × 3 convolution,

batch normalized and passed through a ReLU activation.

Each Lightweight ResNet block comprises a single 3 × 3
convolutional layer followed by batch normalization and a

ReLU activation unit.

The architecture of the DenseNet [18] inspires us to de-
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Figure 4. Block Diagram of Siamese Network based FewFaceNet.

sign of the last branch. Here, we utilizes dense connections,

where each layer in a dense block receives feature maps

from all preceding layers. This dense connectivity allows

for direct information flow and feature reuse, enabling ef-

ficient learning from different scales and abstraction levels.

This branch includes three lightweight dense blocks, each

comprising one 1×1 convolution and one 3×3 convolution

layer sequentially. Inside each block, the inputted feature

maps are passed through batch normalization and a ReLU

activation before passing to each convolution layer. Before

passing the features into a dense block, we apply a 3×3 con-

volution to reduce the dimensions of the feature maps. The

output of the dense block is then processed through another

3× 3 convolution layer to reduce the number of channels.

Finally, the last layer of our model’s architecture con-

sists of a three-layer fully connected (FC) network. Each

FC network computes similarity scores based on the fea-

tures passed from each branch of the previous layer’s Node

modules.

3.3. Design of FewFaceNet

FewFaceNet utilizes few-shot learning (FSL), an ML

technique enabling models to learn new tasks from a few

examples. FSL addresses data scarcity and enhances gener-

alization, making it ideal for real-world applications with

limited data. Moreover, FSL can be implemented as in-

cremental learning by updating a pre-trained model with

new concepts. The model is fine-tuned using a few sam-

ples for the new task while retaining knowledge from previ-

ous tasks. This enables continuous learning and adaptation

without retraining.

Incremental FSL is well-suited for face authentication

applications as it allows the model to continuously learn and

recognize new faces without retraining on the entire dataset.

By updating the model with one image of each new face, it

can incrementally expand its face recognition capabilities

while keeping knowledge of previously learned faces.

We utilize the Siamese network, an FSL approach in

this work, which comprises two identical subnetworks with

matching weights and architecture. These subnetworks are

commonly referred to as twin networks or siamese twins.

The main objective of a Siamese network is to determine

the similarity or dissimilarity between two input samples.

Algorithm for training a Siamese network is below:

1. Initialization: θ1 = θ2 (Initialize the Siamese network

with shared weights parameters: w1, w2, . . . , wn and

Bias parameters: b1, b2, . . . , bm )

2. Distance Metric: D(x1, x2) = ‖f(x1) − f(x2)‖
(Compute the distance metric using the outputs of the

subnetworks, f(x1) and f(x2) represents feature em-

beddings of x1 and x2 respectively.)

3. Training Dataset: {(x1, x2, y)} (Training dataset con-

sisting of input pairs (x1, x2) and their labels y)

4. Shuffle Dataset: Shuffle the training dataset during

training

5. Training Loop:

(a) For each training example (x1, x2, y):

i. Forward Pass: f1 = f(x1), f2 = f(x2)
(Compute the output feature embeddings of

the subnetworks)

ii. Distance Calculation: D(x1, x2) = ‖f1 −
f2‖ (Compute the distance metric)

iii. Loss Calculation: L(x1, x2, y) (Compute

the loss based on the distance and the ground

truth )

iv. Backpropagation: θ = θ − α∇L(x1, x2, y)
(Update the weights and parameters using

gradient descent rule)

6. Repeat the iterations for sufficient epochs or until the

model convergence.

The network takes a pair of input images {(x1, x2)} and

processes them through the twin subnetworks, which share

the same architecture and weights θ. The outputs of these

shared subnetworks are then concatenated or combined to

form a single feature vector f(x1), f(x2), representing the

embedded representation of the input pair. These feature

vectors are subsequently used to calculate a similarity or

dissimilarity metric L(x1, x2, y) between the input images.

Common distance metrics include Euclidean distance, co-

sine similarity, or contrastive loss are used.

3.4. Training Details

Our experiment utilizes a meta-learning approach to rec-

ognize faces with minimal support images. During train-

ing, the network employs these distance metrics to calcu-

late the loss against known similarity or dissimilarity la-

bels. The loss is then back-propagated through the net-

work to update the shared weights and optimize its perfor-

mance. Meta-learning with Siamese networks typically in-

volves two phases: the meta-training phase and the meta-

testing phase.
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Figure 5. Number of epoch vs. training and validation loss.

In the meta-training phase, our model is trained to learn

a generalizable representation that can quickly adapt to new

tasks or data. For this phase, we utilize a training dataset

consisting of 1036 classes of samples. The inputs are in

the form of pairs of two images, and the corresponding la-

bel represents the dissimilarity score between the pair (0 if

they belong to the same class, otherwise 1). Additionally,

we incorporate 10% dropout for regularization, employ the

Adam optimizer with an initial learning rate of 0.009, and

utilize cross-entropy loss to adjust model weights and op-

timize the similarity/dissimilarity predictions based on the

true labels. The cross-entropy loss equation for a pair of

inputs in a Siamese network as below:

L(ŷ, y) = −(ylog(ŷ) + (1− y)log(1− ŷ))

where ŷ represents the similarity/dissimilarity score, and

y denotes the true label for the pair. The ŷ value is calcu-

lated by finding the Euclidean distance between the embed-

ding of the input pairs. How the training and validation loss

decreases with an increasing number of epochs is depicted

in Figure 5.

While training, we use the early stopping technique as

the convergence criteria in our experiment; for this, we use a

separate validation set to monitor the model’s performance

metrics with the subsequent training epochs. The valida-

tion set is created by collecting 236 separate classes from

the same domain as the training dataset. Figure 5 shows

the training and validation loss against the training epochs.

There we can notice that the decreasing rate of validation

loss was very high during the initial epochs, and it grad-

ually became very low with subsequent epochs. We also

noticed that the model began to overfit after approximately

50 epochs. Therefore, we decided to early stop the training

process at that point. At that point training loss was around

0.82 and validation loss was around 0.85.

4. Model Evaluation and Results
In the testing phase, the trained model is evaluated on

new tasks to assess its ability to quickly adapt and gener-

alize from a small amount of labeled data. To evaluate our

model’s performance, we employ two different datasets for

Figure 6. Representing the inter-class similarity of test dataset 1.

Figure 7. Representing the inter-class similarity of test dataset 2.

testing. The first dataset consists of 10 classes collected

from the same domain as the training dataset, and the sec-

ond dataset comprises 10 classes of infrared facial images

taken in a dark environment using our infrared camera. De-

tailed discussion could be found in the Section 3.1 namely

as Test datast-1 and Test dataset-2.

The first test dataset is designed to have inter-class simi-

larity following a normal distribution, representing a typical

scenario. In contrast, the second test dataset is specifically

created to maintain a high inter-class similarity, represent-

ing a more challenging scenario. By experimenting with

these two datasets, we aim to comprehensively assess the

model’s performance across different levels of inter-class

similarity. Figure 6 illustrates the inter-class similarity of

the first test dataset whereas Figure 7 illustrates the inter-

class similarity of the second test dataset. While calculating

similarity scores, we use the cosine distance between two

feature vectors.

The performance metrics, including the true authentica-

tion rate (TAR), false authentication rate (FAR), false un-
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One-shot Two-shot Three-shot four-shot Five-shot

A
b

la
ti

o
n

1 TAR 48.50± 0.00 70.68± 0.00 51.93± 0.00 62.69± 0.00 53.98± 0.00
TUR 83.50± 0.80 70.05± 1.80 81.32± 1.00 77.67± 1.40 83.31± 1.60
FUR 51.50± 0.00 29.31± 0.00 48.06± 0.00 37.20± 0.00 46.01± 0.00
FAR 16.50± 0.80 29.94± 1.80 18.67± 1.00 22.32± 1.40 16.68± 1.60

A
b

la
ti

o
n

2 TAR 72.00± 0.00 79.58± 0.00 74.58± 0.00 81.97± 0.00 69.32± 0.00
TUR 33.10± 0.70 27.53± 0.02 36.90± 1.70 28.95± 1.30 40.00± 1.12
FUR 28.00± 0.00 20.41± 0.00 25.41± 0.00 18.02± 0.00 30.67± 0.00
FAR 66.89± 0.70 72.46± 0.20 63.09± 1.70 71.04± 1.30 60.00± 1.12

A
b

la
ti

o
n

3 TAR 37.00± 0.00 59.68± 0.00 39.77± 0.00 53.48± 0.00 38.65± 0.00
TUR 84.40± 0.70 69.52± 0.60 88.17± 1.40 81.51± 1.50 89.69± 2.10
FUR 63.00± 0.00 40.31± 0.00 60.22± 0.00 46.51± 0.00 61.34± 0.00
FAR 15.60± 0.70 30.47± 0.60 11.82± 1.40 18.48± 1.50 10.30± 2.10

F
ew

F
ac

eN
et TAR 70.50± 0.00 80.10± 0.00 75.69± 0.00 78.48± 0.00 74.84± 0.00

TUR 66.70± 2.70 63.87± 0.50 71.71± 1.20 71.97± 0.85 79.01± 1.50
FUR 29.50± 0.00 19.89± 0.00 24.30± 0.00 21.51± 0.00 25.15± 0.00
FAR 33.29± 2.76 36.12± 0.50 28.28± 1.27 28.02± 0.85 20.98± 1.50

Table 1. Mean Values with standard deviations of TUR, TAR,

FUR, and FAR on test dataset-1 across different shot scenarios.

One-shot Two-shot Three-shot four-shot Five-shot

F
ew

F
ac

eN
et TAR 55.00 ±0.00 63.68 ±0.00 56.35 ±0.00 59.06 ±0.00 51.85 ±0.00

TUR 74.60 ±0.70 66.52 ±0.70 75.80 ±1.40 75.20 ±0.87 84.69 ±0.70
FUR 45.00 ±0.00 36.31 ±0.00 43.64 ±0.00 40.9 ±0.00 48.14 ±0.00
FAR 25.40 ±0.70 33.47 ±0.70 24.19 ±1.40 24.79 ±0.87 15.30 ±0.70

Table 2. Mean Values with standard deviations of TUR, TAR,

FUR, and FAR on test dataset-2 across different shot scenarios.

authentication rate (FUR), and true un-authentication rate

(TUR) are computed using the following formulations:

TAR = TN/(FP + TN)

FUR = FN/(FN + TP )

FAR = FP/(FP + TN), and

TUR = TP/(TP + FN)

These metrics are observed for each one-shot, two-shot,

three-shot, four-shot, and five-shot scenarios. Table 1 dis-

plays the values for the mentioned performance metrics, il-

lustrating the results obtained by deploying three ablation

models and the proposed FewFaceNet model on test dataset

1 under various shot scenarios. Here, Ablation 1 repre-

sents two branches of FewFaceNet except the traditional

CNN branch. Ablation 2 represents two branches of Few-

FaceNet except the ResNet-based branch. Ablation 3 rep-

resents two branches of FewFaceNet except the DenseNet-

based branch. In Table 2, the results obtained using the pro-

posed model, FewFaceNet, exclusively on test dataset 2 are

presented for different shot scenarios.

Figure 8 and Figure 9 present the authentication capabil-

ity of FewFaceNet for different samples from test dataset-1

and test dataset-2 respectively with varying shot accuracy

(i.e. one, two, three, four, and five-shot). These metrics

give a comprehensive insight into different aspects of the

model’s performance, such as its ability to identify negative

and positive cases correctly and its tendency to make false

positive and false negative errors.

In the one-shot authentication, when each class consists

of one support image and 20 query images; we generate 20

positive pairs (by combining the support image with each

query image) and an equal number of negative pairs (by

Figure 8. Mean accuracy of FewFaceNet with ablation study in

different shot scenarios on test dataset-1.

Figure 9. Mean accurcy of FewFaceNet in different shot scenarios

on test dataset-2.

combining the support image with negative images) for test-

ing. The negative images are generated by selecting random

images from the dataset, except the support class’s images.

This experimental setup provides 20 positive and 20 nega-

tive simulated results. Then we transfer one previously suc-

cessfully authenticated image from the query set to the sup-

port set for the two-shot authentication. This process will

continue for two-shot to three-shot authentication, three-

shot to four-shot authentication, and four-shot to five-shot

authentication.

During our experiment, threshold values of 0.82 and 0.92

are used for test dataset-1 and test dataset-2, respectively.

Since inter-class similarity for test dataset-2 is relatively

high than that for test dataset-1, we set higher threshold

value for test dataset-2.

When the similarity score between the query and support

set sample is in unison with at least the threshold value, we

classified the query image as belonging to the class of the

supported image. For two, three, four, and five-shot classi-

fications, if the number of support images with a similarity

score equal to or higher than the threshold was greater than

or equal to �(shot + 1)/2�, we classified the query image

to the corresponding support class.

5. Discussion and Future Scopes

The performance of the proposed FewFaceNet is thor-

oughly evaluated through extensive experimentation, and

the results unequivocally demonstrate its effectiveness.

Several metrics are used to assess the model’s performance.
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Figure 10. Response time vs. Number shot in different scenarios.

The accuracy on the normal light test dataset and low light

infrared dataset are depicted in Figure 8 and Figure 9, re-

spectively. Figure 8 also present the results of ablation study

of the proposed backbone model. Based on ablation studies,

the results suggest that the proposed FewFaceNet is stable.

However, when the ResNet-based branch is removed, per-

formance is worse, as indicated by the purple line in the

graph. On the other hand, combining ResNet and DenseNet

leads to improved performance, as shown by the orange line

in the graph.

However, the graph of these two figures clearly shows

improvement from one-shot to five-shot scenarios, albeit

with a slight increase in time cost as depicted in Figure

10. Response time increases each and every possible model.

Time taken by proposed model is little high compared to it’s

ablation models but it is more stable and give higher perfor-

mances. Therefore, if the authentication are not required

real time then number of shot could be increases as incre-

mental learning. This allows the model to progressively im-

prove its performance and generalize better to new classes

or categories with minimal additional training data. Addi-

tionally, the means and standard deviations as presented in

Table 4, are observed to be minimal which also indicating

the stability of the proposed backbone model.

The performance of FewFaceNet is also assessed on in-

frared images, specifically examining its capability to op-

erate effectively in low-light environments. The inter-class

similarity matrix (shown in Figure 7 of this dataset shows

high similarity between classes, which lead performance

degradation. But the proposed FewFaceNet demonstrates

satisfactory performance, albeit slightly lower compared to

images in normal lighting conditions. However, the authen-

tication rate of the model remains reliable, as depicted in

Figure 9.

Based on the findings of this investigation, three imme-

diate future research directions have been identified:

1) Evaluation with a broader range of classes using a
more diverse dataset: To enhance the generalizability of

the proposed FewFaceNet algorithm, it is crucial to assess

its performance with an expanded set of classes and a di-

verse datasets. This assessment will provide insights into

the algorithm’s adaptability and its ability to handle more

complex practical scenarios.

2) Implementation with a real edge camera setup for
authentication evaluation: In order to validate the prac-

tical applicability of the FewFaceNet algorithm, it is very

important to implement it in a real-world edge camera en-

vironment. This setup will allow for authenticating actual

users and assessing the algorithm’s performance under re-

alistic conditions. By conducting such experiments, we can

measure the algorithm’s accuracy, reliability, and potential

limitations in real-world scenarios.

3) Experimented with end-users-in-the-loop: While

we have experimented with an infrared low-light dataset

collected from a cohort, but actual studies with end users

have not been conducted yet. We plan to address this in the

future as part of the deployment study.

By adopting these future scopes, we committed to further

refine and validate the FewFaceNet algorithm, enabling its

potential deployment as a practical authentication system

through edge cameras.

6. Conclusion

This paper introduced FewFaceNet, a lightweight incre-

mental few-shot learning technique designed for face au-

thentication suitable for deployment on edge camera, es-

pecially door security cameras. Extensive experimentation

across different shot scenarios, ranging from one shot to five

shots along with ablation studies, showcases the effective-

ness and robustness of FewFaceNet, even in challenging

low-light environments. FewFaceNet offers low resource

consumption, efficiency, adaptability, and quick authentica-

tion, addressing the requirements of current automated face

authentication systems.

Future research includes optimizing FewFaceNet, ex-

ploring additional datasets, evaluating performance under

diverse conditions, implementing it with edge cameras and

experimentation with end users.

In conclusion, this study establishes FewFaceNet as a

promising lightweight incremental few-shot learning for

face authentication suitable at edge cameras. Its perfor-

mance and potentiality for real-world applications such as

authentication at doors make it valuable for advancing face

authentication technology.
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