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Abstract

Most existing outdoor assistive mobility solutions no-
tify Visually Impaired People (VIP) about potential colli-
sions but fail to provide Optimal Local Collision-Free Path
Planning (OLCFPP) to enable the VIP to get out of the
way effectively. In this paper, we propose MinD, the first
VIP OLCFPP scheme that notifies the VIP of the shortest
path required to avoid Critical Moving Objects (CMOs),
like cars, motorcycles, etc. This simultaneously accounts
for the VIP’s mobility constraints, the different CMO types
and movement patterns, and predicted collision times, con-
ducting a safety prediction trajectory analysis of the optimal
path for the VIP to move in. We implement a real-world pro-
totype to conduct extensive outdoor experiments that record
the aforementioned parameters, and this populates our sim-
ulations for evaluation against the state-of-the-art. Exper-
imental results demonstrate that MinD outperforms the Ar-
tificial Potential Field (APF) approach in effectively plan-
ning a short collision-free route, requiring only 1.69m of
movement on average, shorter than APF by 90.23%, with a
0% collision rate; adapting to the VIP’s mobility limitations
and provides a high safe time separation (> 5.35s on av-
erage compared to APF). MinD also shows near real-time
performance, with decisions taking only 0.04s processing
time on a standard off-the-shelf laptop.

1. Introduction

Visually Impaired People (VIP) face challenges in navi-

gating outdoor environments independently, as their limited

perception hinders their awareness of autonomous moving

objects, including vehicles, bicycles, and pedestrians, which

pose different risks to VIPs’ physical safety [29]. Accord-

ing to [21], more than 30,000 VIPs in India die annually

and around 400 VIPs are injured due to pedestrian-vehicle

accidents. Demonstrated to be of great significance, exist-

ing VIP mobility assistive methods can be classified into

traditional tools (e.g., white canes and guide dogs) and non-

vision/vision-based solutions [10]. Research has favoured

vision-based solutions due to the potential to provide richer

spatial and contextual information. Most vision-based VIP

mobility assistive solutions successfully detect obstacles

[5, 9, 19]. However, they significantly fail to assist VIPs

in effectively avoiding collisions as they do not carry out

optimal collision-free path planning.

Path planning finds a route from a current location to a

final destination, while avoiding obstacles in between [1]. It

is crucial for efficient VIP navigation, as it evaluates all nav-

igation possibilities to avoid unsafe or unnecessary routing

while minimizing VIP’s movement time, effort, and com-

puter resources [22]. Consequently, many efforts have been

made to improve VIP mobility through either borrowing ex-

isting robot global path planning algorithms (e.g., A* [3],

Dijkstra [33], Ant Colony Optimisation [22], and Particle

Swarm Optimisation [34]) or proposing novel ones [23, 20].

However, such global path planning algorithms cannot pre-

vent VIP collisions with moving objects as they require

static representation of an environment, which is imprac-

tical for real-world scenarios.

Compared to global path planning, local path planning

is more promising as it can efficiently respond to real-time

changes in VIP’s surroundings, such as obstacles suddenly

appearing, by dynamically calculating local collision-free

routes without requiring a full predefined environmental

map. Existing local path planning algorithms are mainly

used for robotics [4]; however, they cannot be directly

applied to VIPs as robot mobility constraints are differ-

ent. Unlike VIPs, robots are fully controllable; their avoid-

ance reaction (e.g., stop/move) and motion (e.g., accelera-

tion/velocity) are automatically controlled and adjusted by

planning algorithms [24], which makes such algorithms

more complex. Further, ensuring VIP safety is with a top

priority, and mistakes cannot be tolerated. This requires a

shift in perspective that considers VIPs’ physical abilities

in practice. As far as we know, no study has developed a

local path planning algorithm dedicated to VIPs that can
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be applied to an unknown outdoor environment containing

moving objects of various classes and speeds.

Therefore, this paper presents a novel local path planning

scheme, MinD, to assist VIPs in safely navigating outdoor

environments in which different classes (i.e., car, motorcy-

cle, bicycle, and pedestrian) of objects moving at varying

speeds are present. MinD aims to minimise the distance

a VIP needs to take to dodge such Critical Moving Ob-
jects (CMOs), while avoiding unnecessary transition dis-

tances. To the best of our knowledge, MinD is the first
VIP-specific local path planning scheme that addresses real-

time VIP navigation assistance considering VIPs limited

physical abilities (i.e., walking speed and auditory percep-

tion), ensuring enough time for VIPs to avoid CMOs ef-

fectively, and is able to provide look-ahead safety predic-

tion. This work is part of our larger project to develop a

VIP-navigation assistive system for dynamic environments.

Contributions of this paper can be summarized as follows.

Contribution 1. We develop a collision-free path plan-

ning scheme consistent with VIPs’ limited capabilities,

which plans the shortest path required by the VIP to avoid

CMOs, where the VIP’s walking speed, auditory percep-

tion, various CMO types, and CMOs’ movement patterns

are comprehensively accounted for to ensure that the VIP

can avoid threats effectively and within a safe time. It also

conducts a look-ahead safety prediction trajectory analysis

of the optimal path to ensure more safety for VIPs. This pre-

dicts the VIP’s and CMO’s future positions and movement

patterns, and estimates the collision-free and safe time sep-

aration between the VIP and CMO along the optimal path

according to an adaptive threshold set based on their speeds.

Contribution 2. The VIP-local path planning problem is

challenged by being non-convex by nature. Therefore, we

re-formulate the non-convex problem into a solvable convex

local path planning sub-problem using Sequential Convex
Programming (SCP) to find a tolerable sub-optimal solu-

tion and reduce the computational complexity of the origi-

nal non-convex problem.

Contribution 3. To evaluate our scheme in a highly

practical setting, we implement a real-world prototype, us-

ing commercially available devices, i.e., an RGB camera, a

laptop, and headphone, and carry out extensive experiments

with people walking, cycling and driving in outdoor spaces,

while a researcher mimics the VIP - from this, parameters

were derived, which were populate our simulator parame-

ters. Note, simulation allows safe ’what-if’ experimentation

to fully evaluate our algorithm against the state-of-the-art,

and in an ethically safe, near-to-realistic way. Experimen-

tal results show that MinD outperforms the closest state-of-

the-art Artificial Potential Field (APF)[16] approach and

the baseline Notification-Based Random Decision (NBRD)

method in effectively planning free-collision paths suit-

able for VIP’s mobility and perception conditions ensuring

short avoidance distances. MinD requires only 1.69m of

avoidance distance on average for all CMO classes mov-

ing at varying speeds from 3.6km/h to 108km/h, which

is considerably shorter than APF and NBRD by 90.23%
and 81.04%, respectively, and ensures a 0% collision rate.

With this distance, the VIP can avoid a CMO moving up

to 108km/h with only 1.22s ∼ 4.05s reaction time when

walking at speeds of 1.5km/h ∼ 5km/h. It also achieves a

large average safe time separation (11.52s for cars, 11.59s
for motorcycles, 8.69s for bicycles and 6.68s for pedestri-

ans, which is > 5.35s and > 1.23s compared to APF and

NBRD, respectively), with only 0.04s processing speed.

2. Related Work
This section discusses previous work on local path plan-

ning in robotics and autonomous vehicles.

An Unmanned Aerial Vehicles (UAVs) collision avoid-

ance approach is proposed in [30], in which Simulated

Annealing (SA) and a simple threat-avoidance method are

combined to find a near-optimal path in a 2D radar envi-

ronment constrained by regular circular threats. While the

algorithm successfully escapes form local minima and pro-

duces threat-free paths, it suffers from slow convergence,

resulting in long computation times, i.e., it requires 921, 030
iterations and 9.218s to find the best solution in a 2D map

with 10 threats, using an Intel Core2 Duo P8600 2.4GHz
CPU. Further, to produce a threat-free path, it considers

only the circular areas occupied by the threats, ignoring

their motion (i.e., moving speed and direction).

In [12], a Velocity Obstacle (VO) algorithm is proposed

for robot motion planning in dynamic environments. VO

defines a set of a robot velocities that lead to a collision

with an object moving at a given speed. Then, the set is

filtered out to produce all possible velocities that avoid col-

lision with the obstacle, which is reduced to the dynamically

feasible manoeuvres based on the robot’s acceleration con-

straint. VO is effective in avoiding dynamic obstacles, and

several improvements have been proposed, e.g., Reciprocal

Velocity Obstacle (RVO) [31] and ClearPath [13]. Although

VO-based methods have demonstrated their effectiveness in

assisting robots to avoid a collision, it is difficult to apply

them to VIPs as we cannot control their speeds as defini-

tively. Similarly, in [26] and [18], an algorithm-based Arti-

ficial Potential Field (APF) is proposed. APF is inspired by

a physical concept, a potential field, where the robot moves

as a result of two forces: the destination’s gravity force and

the obstacle’s repulse force. APF is simple and able to work

in real-time. Nevertheless, it is prone to failure in cases

where the repulse and gravity efforts are equal; thus, the

autonomous agent never reaches the destination.

A human-centred X–Y–T space path planning is pro-

posed in [25] to assist robots mobile safely in dynamic en-

vironments and to provide free space to pedestrians in the

1840



Figure 1. VIP Local Path Planning Problem.

same vicinity. Based on a 2D grid-based representation

of the surroundings, it dynamically produces collision-free

path motion considering the robot’s dynamic constraints

and personal human space and directional area. However,

storing environmental information in a grid-based map re-

quires significant storage space, which can negatively im-

pact the algorithm’s efficiency and scalability when deal-

ing with larger environments. In [11], a Deep Reinforce-

ment Learning-based path planning algorithm is proposed

to assist robots in navigating safely among pedestrians. It

is an extended version of [7] and [6], which learns col-

lision avoidance without assuming that pedestrians follow

any particular behaviour rule. However, for training, DRL

requires a large-scale dataset, which may not always be

available and needs to generate training data from extensive

random simulation scenarios, and consumes high resources

and time. Besides, it cannot guarantee an effective perfor-

mance on real-world data that differs from the training data.

3. Path Planning Problem Description, Formu-
lation and Approximation

3.1. Problem Description

Since we aim to assist VIPs in avoiding CMOs of dif-

ferent classes, i.e., cars, motorcycles, bicycles, and pedes-

trians, in unfamiliar dynamic environments, our problem is

classified as local path planning. To address this problem

effectively, we need to detect CMOs and estimate their cur-

rent and future movement, i.e., position and velocity, and

VIP’s corresponding trajectories.

As shown in Fig. 1, we assume that the VIP occupies a

circular zone CB with a centre at point Bt and a radius of

rB at time t on the World Coordinate System 1(WCS). In

our problem, the VIP moves forward towards a known final

distention Bf at a velocity of vB = |vB|∠β, where |vB|
is the speed, and ∠β is the moving angle2. We also assume

that a CMO is at point Ot
i , the center of the circle COi with

a radius of rOi
, and moves to Ot1

i at velocity of vOi =

1It is a real-world 3D Cartesian coordinate system with a predefined

origin.
2The angle between the VIP moving direction and the Z-axis of the

WCS.

|vOi |∠θ. Then, The VIP will be guided to move to Bt1 at

t1 only when a collision is detected (the CMO heads toward

the VIP, determined by our algorithm in Appendix A) and

the estimated collision time between the CMO and the VIP

at t exceeds a certain predetermined threshold SL. When

multiple CMOs exist, we prioritize the nearest threat to be

avoided by considering the CMO with the least collision

time, see Eq. (1). To ensure the VIP’s physical safety, the

rB and rOi
should cover the full width of the VIP and CMO,

respectively.

3.2. Problem Formulation and Approximation

VIPs have limited physical abilities, such as walking at

a limited speed (i.e., ≤ 5km/h[8]) and relying on their

sense of hearing to perceive their surroundings. Therefore,

planning a safe path in advance and providing enough time

for VIPs to receive acoustic guidance instructions and react

safely, i.e., follow the proposed path, is essential for their

safety, particularly in the presence of high-risk CMOs like

cars and motorcycles. Avoiding unnecessary transitions of

VIPs with low-risk CMOs such as bicycles and pedestri-

ans enhances algorithm usability. Accordingly, we estimate

the minimum VIP-CMO collision time to activate our path

planning algorithm as:

min(
||Ot

i −Bt||2
|vtOi

|+ |vtB |
) ≤ SL, i = [1, .., n], (1)

where n is the number of the CMOs, SL is a predefined

time threshold (in s) where its value is adapted based on

the class and speed of CMO i. The Bt = (X,Y, Z)tB
and Ot

i = (X,Y, Z)tOi
are the current 3D positions of the

VIP and CMO i at time t, respectively, in the WCS. The

vtB = (vX , vY , vZ)
t
B and vtOi

= (vX , vY , vZ)
t
Oi

are the

current velocities of the VIP and CMO i at t, where vX ,

vY , and vZ are the velocity components of the X-axis, Y-

axis, and Z-axis of the WCS, respectively, and they are de-

fined as: vtB = (
Xt

B−X
t0
B

t−t0
,
Y t
B−Y

t0
B

t−t0
,
Zt

B−Z
t0
B

t−t0
)tB and vtOi

=

(
Xt

Oi
−X

t0
Oi

t−t0
,
Y t
Oi
−Y

t0
Oi

t−t0
,
Zt

Oi
−Z

t0
Oi

t−t0
)tOi

, where (X,Y, Z)t0B and

(X,Y, Z)t0Oi
are the 3D coordinates of the previous posi-

tions ( Bt0 and Ot0
i ) of the VIP and CMO i at t0, respec-

tively. We use the sum of the absolute values of the VIP and

CMO velocities, assuming a worst-case analysis whereby

the VIP and CMO are directly heading to each other. This

is to provide VIPs with a large safety margin (as possible).

When the least estimated collision time exceeds SL as in

Eq.(1), our objective is to plan the shortest path that ensures

the safety of a VIP by avoiding CMOs of various classes

and varying speeds, considering the aforementioned VIPs’

limited capabilities. To achieve this, we optimise the next

position Bt1 for the VIP, subject to six practical constraints

that take into account the VIP’s abilities and the dynamic

states of CMOs as follows.
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C1: The maximum travelling distance that the VIP can

travel while avoiding the CMO. This constraint is set to con-

sider the VIPs’ limited mobility and prioritize their proxim-

ity to the initial path to avoid getting lost or straying from

their destination. Mathematically, it can be expressed as:

||Bt1 −Bt||2 ≤ Dmax, (2)

where Bt1 = (X,Y, Z)t1B is the optimal safe 3D position of

the VIP at t1. The Dmax is a predefined maximum distance

threshold in m.

C2: The maximum travelling time that is required by

the VIP to safely reach Bt1 based on their moving speed

- note this parameter is variable and can be tailored to the

user from mobile phone walking measurements. Mathemat-

ically, this constraint can be expressed as:

||Bt1 −Bt||2 ≤ Tmax|vt1B |. (3)

where the vt1B is the next velocity of the VIP at t1, and the

Tmax is the maximum expected time (in s) the VIP requires

to successfully travel from Bt to Bt1 .

C3: More than merely moving the VIPs to an obstacle-

free position is required to ensure their safety, as CMOs can

move at varying speeds and suddenly change their direc-

tion. Therefore, it is essential to predict the CMO’s next
position Ot1

i and estimate the time separation between the

VIP and CMO positions at t1. Besides, this time separation

should be sufficiently large to guarantee more safety for the

VIP, especially, when the CMO shifts towards the VIP, who

begins evading. Based on this, we formulate the safe time
separation constraint as follows:

||Ot1
i −Bt1 ||2 > sl(|vt1Oi

|+ |vt1B |), (4)

Ot1
i = Ot

i + vtOi
(t1 − t), (5)

where vt1Oi
is the next velocity of the CMO i at t1, and sl

is the predefined minimum time interval (in s) that must be

maintained between Bt1 and Ot1
i . The sl value is adjusted

based on the CMO i’s class and speed, such that higher-

risk CMOs (i.e., cars and motorcycles) require a larger sl to

ensure adequate safety for the VIP.

To successfully avoid collision with the CMO, the VIP

must move outside the critical zone, a potential threat area

(shadowed in Fig. 2) confined between the two tangents←−−→
O1B1 and

←−−→
O2B2 of circles CB and COi

intersected at point

A. To achieve this, we define two collision avoidance con-

straints (C4 and C5) as follows. Note, we only consider the

2D XZ-plane of the WCS (Fig. 1), the ground plane shared

by the VIP and the CMO as we assume that camera move-

ment along the Y-axis is negligible as it is perpendicular to

the ground plane.

C4: To change the VIP’s direction away from the CMO’s

path, the moving angle constraint is imposed, which is ex-

pressed as follows:

β < (φ− α)− δa, (6)

Figure 2. CMOs Collision Avoidance.

α = tan−1

⎛
⎝ 1√

d2

(rOi
−rB)2 − 1

⎞
⎠ , (7)

φ = tan−1

(
Xt1

Oi
−Xt

B

Zt1
Oi

− Zt
B

)
, (8)

β = tan−1

(
Xt1

B −Xt
B

Zt1
B − Zt

B

)
, (9)

where α is the angle between AOt1
i and AO1 (see Fig. 2

and for the derivations, see Appendix B), d = |BtOt1
i | is

the Euclidean distance between Bt and Ot1
i and can be cal-

culated as d =
√

(Xt1
Oi

−Xt
B)

2 + (Zt1
Oi

− Zt
B)

2, φ is the

angle of the displacement vector from Bt to Ot1
i (relative

to the Z-axis of the WCS), and β is the angle of the dis-

placement vector from Bt to Bt1 . The δa is an angle safety
margin to ensure that the VIP moves away sufficiently from

the CMO’s direction of motion, especially when CMOs are

detected early at a far distance since the object may ap-

pear smaller at greater distances, resulting in a smaller al-

pha value. The δa can be adapted based on the VIP safety

requirements. The equivalent expression of Eq. (6) is:

(Xt1
B −Xt

B)− (tan((φ− α)− δa)(Z
t1
B − Zt

B)) < 0.
(10)

Another form of the moving angle constraint is:

(Xt1
B −Xt

B)− (tan((φ+ α) + δa)(Z
t1
B − Zt

B)) > 0.
(11)

Eq. (10) and Eq. (11) can be used interchangeably to move

the VIP to the left or right based on the CMO relative posi-

tion, respectively.

C5: To ensure that the VIP moves outside of the threat

area (the critical zone in Fig. 2), a constraint on the VIP’s

moving distance can be applied as:

||Bt1 −Bt||2 > (rB + rOi
) + δd, (12)

where δd is a distance safety margin (can be adapted ac-

cording to VIP safety requirements) that ensures that the

VIP moves outside the critical zone with sufficient dis-

tance. This is because the optimal paths may be diago-

nal lines rather than horizontal ones. Besides, objects do
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not always move in straight lines; their paths may involve

slight changes in their moving direction. This may lead the

scheme to detect multiple collisions between the VIP and

the same object within a short period of time. Therefore, δd
can prevent the VIP from being transited frequently, that is,

actually unnecessary.

C6: To ensure that VIP continually advances toward the

final destination Bf , we define the forward moving con-

straint as follows:

||Bt1 −Bf ||2 ≤ ||Bt −Bf ||2. (13)

Based on all above definitions, we formulate a non-convex

VIP-specific local path planning problem, the non-convex
MinD, as follows:

min
Bt1

f(Bt1) = ||Bt1 −Bt||2|
{
min(

||Ot
i −Bt||2

|vtOi
|+ |vtB |

) ≤ SL

}
s. t.

C1: Eq. (2), C2: Eq. (3), C3: Eq. (4), C4: Eq. (10),

C5: Eq. (12), and C6: Eq. (13) (14)

The objective function f(Bt1) and all the constraints in Eq.

(14) are convex except C3 and C5; both are non-convex con-

straints due to the violation of the standard formulation of

the convex optimisation problem (i.e., C(x) ≤ 0[2]). For

this reason, the MinD becomes a non-convex problem. In

the absence of convexity, a problem cannot be solved.

To solve the non-convex MinD problem in Eq. (14), we

use the Sequential Convex Programming (SCP) [2]. In SCP,

the original non-convex problem is transformed into a se-

ries of convex sub-problems, by replacing the non-convex

constraint or objective function with convex approxima-

tions around an approximation point, that can be iteratively

solved, using a convex algorithm, starting from an initial

guess until it converges to a solution that is acceptable with

certain convergence criteria, see Algorithm 1. Therefore,

we approximate the non-convex constraints C3 and C5 to

convex constraints using the first-order Taylor series ap-

proximation. In the following, the equivalent convex con-

straints C ′3 and C ′5 of the C3 and C5, respectively:

C ′3 = ||Ot1
i −Bt1

k ||
2
+ [

−(Xt1
Oi

−Xt1
Bk

)

||Ot1
i −Bt1

k ||
2

,
−(Y t1

Oi
− Y t1

Bk
)

||Ot1
i −Bt1

k ||
2

,

−(Zt1
Oi

− Zt1
Bk

)

||Ot1
i −Bt1

k ||
2

](Bt1 −Bt1
k ) > sl(|vt1Oi

|+ |vt1B |),
(15)

C ′5 = ||Bt1
k −Bt||

2
+ [

(Xt1
Bk

−Xt
B)

||Bt1
k −Bt||

2

,
(Y t1

Bk
− Y t

B)

||Bt1
k −Bt||

2

,

(Zt1
Bk

− Zt
B)

||Bt1
k −Bt||

2

](Bt1 −Bt1
k ) > (rB + rOi) + δd,

(16)

where Bt1
k is an approximation point that is used to approx-

imate a solution around, and it can be initially set to any

random value that produces a feasible solution to the ap-

proximated sub-problem. Based on the above approxima-

tions, we re-formulate the Eq. (14) to the following:

min
Bt1

f(Bt1) = ||Bt1 −Bt||2|
{
min(

||Ot
i −Bt||2

|vtOi
|+ |vtB |

) ≤ SL

}
s. t.

C1: Eq. (2), C2: Eq. (3), C ′3: Eq. (15), C4: Eq. (10),

C ′5: Eq. (16), and C6: Eq. (13) (17)

To solve the convex sub-problem in Eq. (17), we set a ran-

dom initial value Bt1
0 , and define a tolerance variable ε > 0

as a convergence criteria to stop the iteration k and find the

global optimal solution Bt1 . The algorithms of solving Eq.

(17) is summarized in Algorithm 1.

Algorithm 1 The SCP of the convex MinD sub-problem

Given initial point Bt1
0 , iteration k, and tolerance ε > 0

for i = 0, 1, . . . , k do
Solve the convex sub-problem in Eq. (17)

if Eq. (17) is feasible then
Bt1

k+1 ← Bt1

if ||Bt1
k+1 −Bt1

k ||2 < ε then
Stop it is converged

else
Bt1

k ← Bt1
k+1

Continue

end if
else

Initialize a new point Bt1
k

end if
end for

4. Evaluation
To evaluate our work in a highly practical setting, we im-

plemented a real-world prototype, see Fig. C.2 in Appendix

C, using commercially available devices (i.e., a camera, lap-

top, and headphones). The specifications of such devices

and implementation details are presented in Appendix C.

With our prototype, we conducted measurements in

structured wide outdoor environments and captured videos

of lightly choreographed (follow predetermined scenarios)

volunteers driving cars, motorcycles and bicycles and walk-

ing at different speeds while a person mimics a VIP. Then,

we analyze these objects’ movements, calculate collision

times, and studied the emission deadlines of early alarms for

the VIP to avoid CMOs effectively (details are provided in

Appendix C). This is to accurately parameterize our simula-

tor and set practical parameters (e.g., rB and Tmax for VIP,
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and rO, δd, SL, sl, for each CMO class) that would map a

real-world implementation (i.e., by leaving enough time for

the VIP to react, especially with high-speed objects). Sim-

ulation allows safe ’what-if’ experimentation to fully eval-

uate MinD effectively and in a near-to-realistic way.

4.1. Empirically Parameterized Simulator Setup

To this end, we developed a 2D Python-based simulator

to randomly create large numbers of experimental scenarios

and simulate CMO’s movements and the VIP’s manoeuvres

using basic geometric algorithms without compromising

health and safety, where its parameters were learned from

our real-world experiments. The simulator used Ubuntu

14.04.4 LTS, with an Intel Core i9-9900K CPU and 64GB

RAM. We use a 2D simulation environment because we

assume the Y-axis coordinates of the VIP and CMO are

zeros since the Y-axis is vertical to the ground plane (2D

XZ-plane, the shared plane between the VIP and CMO, see

Fig. 1). To effectively evaluate our proposed algorithm, we

used the Monte Carlo method [27] in our simulation experi-

ments. In particular, for each class, we moved the CMO to-

wards the VIP at 8 different speeds, 11km/h ∼ 108km/h
for cars and motorcycles, 7km/h ∼ 54km/h for bicy-

cles, and 3.4km/h ∼ 36km/h for pedestrians. Then, for

each speed, we ran 100 samples with random CMO’s po-

sitions. This means 3200 samples for all CMO classes

(800 for each class) are included in the experiments. The

environments we simulate are car parks, near driveways,

pedestrian crossings and walking footpaths, with a dimen-

sion of 20mx500m, with the initial VIP’s starting position

at B∗t = (0, 0) and final destination at Bf = (0, 500). For

simplicity, we assume that the CMO, in all our experiments,

moves directly toward the VIP without changing its direc-

tion and speed (i.e., |V t1
O | == |V t

O|). We expect that the

VIP can change his/her direction to avoid such threats; how-

ever CMOs adapting their speed and direction are left for

further work. We also assume that the VIP walks at a fixed

speed of 5km/h (|V t1
B | == |V t

B |), and moves forward to-

wards the predefined known final destination Bf . Further

work will look at the VIP adapting speed as well.

For parameter setting, we differentiate between CMOs

classes in terms of risk level (i.e., cars and motorcycles are

high-risk CMOs, and bicycles and pedestrians are low-risk

CMOs). The parameter settings that are adjusted for each

CMO’s class, are as follows, car: SL = 12s, sl = 5s,

rO = 0.9m, and δd = 1.1m, motorcycle: SL = 12s,

sl = 5s, rO = 0.45m, and δd = 0.65m, bicycle: SL = 9s,

sl = 4s, rO = 0.35m, and δd = 0.55m, and pedestrian:

SL = 7s, sl = 3s, rO = 0.27m, and δd = 0.47m. For

cars and motorcycles, we set larger threshold (i.e., SL and

sl) values than bicycles and pedestrians to guarantee more

safety for the VIP by early planning a safe path to follow,

considering a VIP’s limited capabilities (auditory percep-

tion and slow moving speed), and leaving a greater time

separation between the VIP and CMO at t1. Since bicycles

and pedestrians are less dangerous, we reduced the values

to avoid unnecessary transitions for the VIP. For all CMO

classes, we set the other parameters as: B∗t = (0m, 0m),
Bf = (0m, 500m), rB = 0.25m, Dmax = 10m, Tmax =
5s, δa = 30◦, k = 100, and ε = 0.001.

4.2. Evaluation Metrics

For evaluation, we define four metrics as follows. First,

travelling distance to measure the path length that the VIP

should travel to avoid threats, calculated as: ||Bt1 −Bt||2.

Second, safe time separation between the VIP and CMO

in the optimal path to measure its safety, calculated as:
||Ot1

i −Bt1 ||
2

|vt1
Oi
|+|vt1

B |
. Third, collision rate to measure our scheme

performance in planning a collision-free path. In collision

rate, we consider a collision if the safe time separation is

less than sl that is set based on CMO risk level, see Section

4.1. Then we calculate the collision rate as: 1
m

∑m
i=1 (

C
N ),

where m is the number of the samples that represent CMO

moving speeds for a particular CMO class (i.e., 8 speeds),

N is the number of random samples running under each

CMO moving speed (i.e., 100 samples), and C is the num-

ber of collisions. Fourth, computation time and convergence
iteration to measure the efficiency of MinD in providing

real-time path planning.

4.3. Evaluation Methodology

To investigate our algorithm’s performance in the ab-

sence of specific-VIP local path planning algorithms, we

compared our algorithm with two methods using the above

metrics. The first method is a baseline, a Notification-Based
Random Decision (NBRD) method. In NBRD, we assume

that the VIP takes random avoidance decisions according to

alerts issued by a navigation-assistive system that lacks lo-

cal path planning. We also assume that the VIP can move

in a forward direction from 45◦ to 135◦ to manoeuvre the

CMO with a limited distance (i.e., < 10m). The second

method is the state-of-the-art robot local path planning al-

gorithm, improved Artificial Potential Field (APF) [16].

The APF is widely used in robotics motion planning due

to its simplicity, effectiveness, and real-time performance.

We chose the improved APF in [16] for comparison because

the oscillation and local minima issues are effectively ad-

dressed by integrating the Simulated Annealing algorithm.

To obtain comparable results, we set the parameter settings

of improved APF, after extensive trials for parameter tuning

while considering APF parameter settings effects studied in

[17], as follows: repulsive coefficient krep = 109, gravita-

tional coefficient katt = 0.1, control annealing temperature

T = 10 and escape step size Es = 4, and repulsion in-

fluence distance rr = sl(|vt1O | + |vt1B |). The value of rr is
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(a) (b)

(c) (d)

Figure 3. The Distance Travelled by the VIP for Each CMO Class.

(a) Cars, (b) Motorcycles, (c) Bicycles, and (d) Pedestrians.

adaptive based on the VIP’s speed, CMO’s speed, and the

value of sl. Note, sl is set according to CMO’s risk level, as

the case of our algorithm’s parameter settings, see Section

4.1. It should be noted that we set krep very large compared

to katt because our top priority is to ensure VIP’s safety; we

strive to keep the VIP as far away from threats as possible.

We set a large value of Es compared to [16] to speed up the

processing of escaping local minima and oscillation. In our

experiment, we do not care about the whole path of arriv-

ing at the destination planned by APF; we only consider the

proposed path to avoid the CMO.

4.4. Results and Discussions

Travelling Distance. In Fig. 3, we show the result of

the travelling distance of MinD, NBRD and improved APF

[16] for each CMO class under 8 different moving speeds.

Fig.3a shows the average results of 800 samples of the car

class moving at speeds from 11km/h to 108km/h, where

100 samples are averaged for each speed. In Fig. 3b, the

results of the motorcycle class are demonstrated, with the

same number of samples moving at the same speeds as the

car class. In Fig. 3c and Fig. 3d, the results of bicycles and

pedestrians moving at speeds of 7km/h ∼ 54km/h and

3.6km/h ∼ 36km/h are shown, respectively.

The results clearly demonstrate that the travelling dis-

tance of MinD scheme is minimised differently based on

CMO class, the average distance is 2.91m for cars, 1.56m
for motorcycles, 1.26m for bicycles, and 1.02m for pedes-

trians, and theses distances are fixed regardless of the

CMO’s speed for all classes. For NBRD, distances change

randomly regardless of CMO class and speed, as they are

not taken into account; the VIP moves as long as the alerts

(a) (b)

(c) (d)

Figure 4. The Time Separation Between the VIP and Each CMO

Class. (a) Cars, (b) Motorcycles, (c) Bicycles, and (d) Pedestrians.

are sent until the danger is completely avoided. The average

distance is 11.27m for cars, 8.79m for motorcycles, 7.91
for bicycles, and 7.62m for pedestrians, which are greater

than our scheme’s average distances. For APF, the travel-

ling distance generally increases as CMO’s speed increases

for all CMO classes. This increase is because APF de-

pends on two artificial forces for path planning, the attrac-

tion force to reach the destination and the repulsion force

to move away from obstacles. The repulsion force is re-

stricted by an obstacle’s influence distance rr, which be-

comes larger as the CMO’s speed increases; this force be-

comes stronger at the centre of the rr and decreases at its

edges. Therefore, APF lets the VIP travel towards the des-

tination (and towards the obstacle if they are in the same di-

rection) until the repulsion force has a significant effect that

keeps the VIP from hitting the obstacle. Based on this, the

paths produced by APF have very long average distances,

21.58m for cars, 21.29m for motorcycles, 14.68m for bicy-

cles and 11.53m for pedestrians. This makes APF imprac-

tical for VIPs as they have limited mobility constraints. To

sum up, considering the minimum travel distance to avoid

CMOs, MinD manages to achieve the lowest average dis-

tance over all classes, 1.69m, compared to NBRD and im-

proved APF, which achieved 8.90m and 17.27m on aver-

age, respectively. This means, with MinD, the VIP needs

only 1.22s ∼ 4.05s on average to avoid a threat when

moving at 1.5km/h ∼ 5km/h, while with NBRD and

improved APF, the VIP needs a longer time (> 6.40s for

NBRD and > 12.43s for APF), which may threaten VIP’s

safety. This demonstrates the effectiveness of our scheme.

Time Separation. Fig. 4 shows the results of the time

separation of MinD, NBRD and APF [16] for all CMO
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Table 1. Collision Rate Among Our Scheme and Other Methods

Class MinD (ours) NBRD Imp. APF[16]

Car 0% 2.75% 99.75%
Motorcycle 0% 3.38% 94.88%

Bicycle 0% 5.63% 84.38%
Pedestrian 0% 11.25% 68.75%
Average 0% 5.75% 86.94%

classes. The results of cars and motorcycles are demon-

strated in Fig. 4a and Fig. 4b, respectively. Fig. 4c

shows the results of bicycles, while Fig. 4d shows the re-

sults of pedestrians. The results show that, for MinD, the

time separation between the VIP and CMOs generally in-

creases as speed increases; however, it decreases for cars

and motorcycles at speeds > 72km/h. This is reasonable

due to the considerably higher speeds of cars or motorbikes

compared to the VIP, who possesses limited mobility. De-

spite this decrease, MinD still achieves large average time

separations for such CMOs, i.e., 11.52s for cars, 11.59s
for motorcycles, 8.69s for bicycles and 6.68s for pedestri-

ans. NBRD shows a pattern similar to MinD but with minor

fluctuations due to the randomness of the VIP’s avoidance

decisions (based on triggered alarms). It achieves 10.42s
for cars, 10.53s for motorcycles, 7.41s for bicycles, and

5.20s for pedestrians. For APF, the time separation gener-

ally decreases as the speed increases for all CMOs, achiev-

ing 4.76s on average for cars, 4.84s for motorcycles, 4.12s
for bicycles and 3.37s for pedestrians. The reason is that,

in APF, the repulsion force generated by obstacles is in-

versely proportional to the distance. When the object be-

comes slower, it is detected closer to the VIP; thus, the re-

pulsion force increases and vice versa. The APF operates

contrary to our goal of providing more time separation as

the CMO’s speed increases. Therefore, we conclude that

APF is unsafe for VIP local path planning.

Collision Rate. Table 1 compares collision rates for

MinD, NBRD, and APF [16]. The results show that MinD
achieves a 0% average collision rate over all classes, while

NBRD and APF achieve 5.75% and 86.94% average colli-

sion rates, respectively. Unlike NBRD and APF, MinD pre-

vented collisions because it adaptively optimises the VIP’s

position to avoid threats while considering the VIP’s lim-

ited capabilities, the CMOs’ moving patterns and the esti-

mated collision times. This demonstrates the importance

of our proposed scheme for planning collision-free routes

for VIPs navigating dynamic environments with different

CMOs moving at varying speeds.

Computation Time. Table 2 shows the comparison

of MinD and APF [16] in terms of the average computa-

tion time and convergence iteration over all CMO classes.

NBRD is not included here as it is not actual local path

Table 2. Average Computation Time and Convergence Iteration

Method Comp. Time Convergance Iter.

MinD (ours) 0.04s 3

Imp. APF[16] 0.004s 60

planning. Despite APF’s significantly shorter computation

time of 0.004s, MinD successfully achieves real-time per-

formance by only requiring 0.04s (close to 0s), running on

an Intel Core i9-9900K CPU. Due to the differences in the

underlying avoidance strategies of both algorithms, AFP re-

quires 60 iterations to converge, while MinD only requires 3
iterations. Unlike APF, MinD simultaneously considers the

VIP’s walking speed, CMOs’ movement patterns, and esti-

mated collision times and performs a look-ahead safety pre-

diction of an optimal position; this accelerates convergence

to a collision-free path that effectively accommodates the

VIP in challenging environments. All these are done within

only 0.04s, demonstrating our algorithm’s efficiency.

In summary, our proposed local path planning scheme

demonstrates its effectiveness over the state-of-the-art lo-

cal path planning APF approach and the baseline NBRD

method for practical and safe VIP mobility assistance in

terms of minimisation of CMO avoidance distance, signifi-

cant time separation, and 0% collision rate, with a negligi-

ble processing speed. However, the MinD needs to be eval-

uated with CMOs that unexpectedly change their trajectory,

which is our future step. Additionally, we plan to investi-

gate the MinD performance with more complex real-world

scenarios and when it is fully integrated with a vision-based

system under different conditions (e.g., lighting conditions).

We also will optimise the MinD to achieve real-time perfor-

mance on resource-constrained hardware.

5. Conclusion

This paper presents MinD, a VIP-specific local path

planning scheme to assist VIPs in outdoor mobility by opti-

mally avoiding CMOs moving at different speeds. In for-

mulating the MinD, we explored the natural human be-

haviour to avoid moving threats considering VIP’s condi-

tions and perceptions in practice. We also conduct a look-

ahead safety prediction trajectory analysis of the optimal

path to guarantee more VIPs’ safety. Experimental re-

sults demonstrate the effectiveness of MinD, compared to

the well-known APF algorithm, in terms of minimising the

travelling avoidance distance (only 1.69m on average over

all CMO classes, which is shorter than APF by 90.23%),

allowing a large time separation between the VIP and CMO

(> 5.35s, on average, compared to APF), and avoiding the

threats by 100%, with near real-time performance where the

processing time is 0.04s on a standard off-the-shelf laptop.
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