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Figure 1: The SHOWMe dataset comprises 96 videos with their associated high-quality textured meshes of a hand holding

an object. For two different samples, we show on the left side, row by row, real RGB crops from the dataset, an overlay of

the corresponding ground truth textured mesh, and a rendering of the texture-less mesh with Phong shading. On the right, we

show the 3D reconstruction of the hand-object obtained from the RGB stream only, using one of the evaluated baselines.

Abstract

Recent hand-object interaction datasets show limited
real object variability and rely on fitting the MANO para-
metric model to obtain groundtruth hand shapes. To go
beyond these limitations and spur further research, we in-
troduce the SHOWMe dataset which consists of 96 videos,
annotated with real and detailed hand-object 3D textured
meshes. Following recent work, we consider a rigid hand-
object scenario, in which the pose of the hand with re-
spect to the object remains constant during the whole
video sequence. This assumption allows us to register
sub-millimeter-precise groundtruth 3D scans to the image
sequences in SHOWMe. Although simpler, this hypoth-
esis makes sense in terms of applications where the re-
quired accuracy and level of detail is important e.g., ob-
ject hand-over in human-robot collaboration, object scan-
ning, or manipulation and contact point analysis. Impor-
tantly, the rigidity of the hand-object systems allows to
tackle video-based 3D reconstruction of unknown hand-
held objects using a 2-stage pipeline consisting of a rigid
registration step followed by a multi-view reconstruction

(MVR) part. We carefully evaluate a set of non-trivial base-
lines for these two stages and show that it is possible to
achieve promising object-agnostic 3D hand-object recon-
structions employing an SfM toolbox or a hand pose es-
timator to recover the rigid transforms, and off-the-shelf
MVR algorithms. However, these methods remain sensi-
tive to the initial camera pose estimates which might be
imprecise due to lack of textures on the objects or heavy
occlusions of the hands, leaving room for improvements
in the reconstruction. Code and dataset are available at
https://europe.naverlabs.com/research/showme/.

1. Introduction
Understanding interactions between hands and objects

from RGB images is a key component towards better under-

standing human actions and interactions. Such understand-

ing could benefit many applications, from virtual and aug-

mented reality to human-robot interaction and autonomous

robotic manipulation via learning by demonstration. For

instance, in a scenario where a human is handing over an

object to a robot equipped with RGB sensors, we expect the
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Figure 2: Hand-Object 2-stage 3D reconstruction pipeline. Given an RGB video of a hand holding an object (left), the

rigid transformation between frames is first estimated. This allows to see the problem as if a set of multiple virtual cameras

observe a fixed hand-object system (middle). Multi-view reconstruction can then be employed to estimate an accurate hand-

object 3D shape (right). We benchmark several baselines for both stages using the presented dataset.

robot to grasp the object without hurting the person in any

way. Such action is likely to require a fine-grained percep-

tion of both the object and the hand holding it, and being

able to accurately model the hand-object (HO) system in

3D from RGB data would be very useful in such context.

This problem of joint HO 3D reconstruction has been ad-

dressed in a large body of recent works [26, 24, 25, 6, 21,

11, 13, 54, 13, 48] that estimate HO 3D shape from single

RGB images. These methods often rely on a deformable

kinematic model of the human hand, MANO [42], which

contains useful priors, but also limits the potential recon-

struction accuracy [15] for unseen hand shapes. A second

important limitation of most HO reconstruction approaches

is that the exact 3D model of the object is often assumed to

be known apriori, and they tend to struggle to generalize to

objects that fall outside of the training distribution. While

single-image HO reconstruction without priors over the ob-

jects remains very challenging, exploiting multiple obser-

vations of the scene can significantly simplify the task.

One way to obtain more observations is to consider a

synchronized multi-camera setup, increasing the complex-

ity of deployment in practice. Another way is to focus on

the temporal aspect of the RGB streams as in [27] who re-

cently showed that multiple observations of the scene can be

exploited to simplify object-agnostic hand-object 3D recon-

struction. However, their method remains limited to close-

up fingertip grasps of small objects and cannot be used for

natural hand-object interactions. Interestingly, seldom pre-

vious work focused on aggregating temporal information of

a RGB video for HO reconstruction [27], unless the strong

assumption of a known object was made [25, 24].

Following [6, 27], we simplify the problem as an inter-

mediary step towards dynamic temporal integration by as-

suming that the camera is static and the hand is holding an

unknown object rigidly. In this setup, an RGB video can

be viewed as multiple observations of the same HO sys-

tem, which allows to formulate the HO modeling problem

in a Multi-View Reconstruction (MVR) setting: the RGB

appearance of a HO instance that undergoes a rigid trans-

formations is observed. In order to solve this problem, two

unknowns have to be addressed: 1. the rigid transforma-

tion and 2. how to aggregate RGB observations. It is worth

noting that these points can be addressed either separately

or jointly. With the exception of [27] who operates in a

rather constrained scenario, no method was specifically de-

signed to solve the challenges raised by this task but, more

importantly, there is a need for an evaluation protocol and a

specifically designed dataset.

Therefore, we propose a novel dataset consisting of 96

videos of a hand holding an object rigidly and showing this

object to the camera. We captured a total of 87K frames de-

picting 42 unique objects with evenly distributed grasp con-

figurations, handled by 15 subjects reflecting a diversity of

gender, color, and hand shape. Importantly, our dataset con-

tains high-precision ground-truth (GT) HO 3D shapes, that

we captured using a sub-millimeter precision scanner be-

fore capturing each video sequence. The resulting textured

3D meshes are then registered to each frame of the cor-

responding sequences, in order to provide highly detailed

ground truth annotations. In practice, we proceed in two

steps: 1) we register the GT HO mesh to the depth map of

each frame in the sequence. 2) We refine the registration

using a differentiable rendering pipeline to obtain very ac-

curate alignments of the 3D mesh with the RGB frames as

shown in Fig. 1. We call our dataset SHOWMe, standing for

Single-camera Hand-Object videos With accurate textured

3D Meshes.

Using SHOWMe, we benchmark the 2-stage pipeline

consisting of a rigid registration followed by a HO 3D re-

construction from multiple observations, see Fig. 2. In the

same spirit as [34] with body shapes, we first estimate the

rigid transformations between frames using the output of

a hand keypoints detector as in [27]. We compare this

approach to a standard structure-from-motion (SfM) ap-

proach, namely COLMAP [44]. We find that hand-based

estimation of the rigid transformation is more robust for

textureless objects but suffers in case of heavy occlusions.

Given the rigid registration, the HO reconstruction can be

performed using multi-view reconstruction methods. We

compare a silhouette based reconstruction method, lever-

aging hand-object segmentation [32] to more recent ap-

proaches based on differentiable rendering method [47] and
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dataset
real marker- # number of image grasp object hand-obj hand hand

images less img seq sbj obj resol. variability scan texture scan annotation

ObMan[26] × � 154k - 20 3K 256 × 256 +++ � × × MANO

GRAB[46] × × - 1,335 10 51 - +++ � × × MANO

FPHA[20] � × 105k 1,175 6 4 1920×1080 + � × × keypoints

ContactPose[6] � × 2,991k 2,303 50 25 960×540 ++ � × × MANO

ARCTIC[17] � × 1,200k 242 9 10 2800 × 2000 +++ � × × MANO

YCB-Affordance[16] � � 133k - 1 21 640 × 480 +++ � × × MANO

GUN-71[41] � � 12k 1,680 8 1988 640×480 +++ × × × grasp Id

FreiHand[58] � � 37k - 32 27 224×224 ++ × × × MANO

Dexter+Object[45] � � 3k 6 2 2 640×480 + × × × fingertips

EgoDexter[35] � � 3k 4 4 - 640×480 + × × × fingertips

HO3D[21] � � 78k 27 10 10 640 × 480 +++ � × × MANO

DexYCB[12] � � 582k 1,000 10 20 640 × 480 ++ � × × MANO

H2O[31] � � 571k - 4 8 1280 × 720 ++ � × × MANO

OakInk[53] � � 230k - 12 100 848 × 480 +++ × × × MANO

HOD[27] � � 126k 70 1 35 2160 × 3840 + �(only 14) × × NO Annotations

SHOWMe (Ours) � � 87k 96 15 42 1280×720 +++ � � � MANO

Table 1: Comparison of our dataset with existing hand-object interaction datasets

neural implicit surfaces [27]. All three obtain extremely

accurate results given ground-truth registration. Yet, when

considering estimated registrations, results of the best base-

line are satisfactory on approximately three quarters of the

sequences, and fail on the others. This confirms that HO 3D

reconstruction from an RGB video is a difficult task, and we

hope our dataset will foster further research on this topic.

In summary, our contribution is twofold. First, we pro-

pose a novel hand-object interaction dataset, SHOWMe,

and the pipeline we designed to annotate RGB-D videos

using high-precision hand-object 3D scans. SHOWMe is

the first dataset providing such level of accuracy for the

ground-truth hand-object 3D shapes. Second, we evaluate

a set of baselines for the MVR-based pipeline for detailed

and object-agnostic HO 3D reconstruction in RGB videos.

After discussing related work and existing datasets in

Sec. 2, we introduce the SHOWMe dataset and its captur-

ing setup in Sec. 3. We finally present the 2-stage pipeline

in Sec. 4 before evaluating several baselines in Sec. 5.

2. Related Work

Our two contributions being a new HO dataset and a

benchmark of object-agnostic HO reconstruction baselines,

we discuss below the most relevant datasets and methods.

Hand-Object Datasets. Earlier research on hand-object in-

teraction [41, 4, 8, 9, 18] have proposed datasets for grasp

classification or action recognition. Despite the importance

of the recognition tasks, these datasets were seldom consid-

ered for HO reconstruction research due to the unavailabil-

ity of GT 3D annotations, such as 3D joints or 3D shapes.

Obtaining images with ground-truth 3D information is a

tedious problem in general, even for non-hand-related re-

search. The small size of the hands in images make them

difficult to annotate manually [45]. The problem is ex-

acerbated when considering a hand interacting with ob-

jects. Past work has therefore proposed to consider syn-

thetic data [40, 35, 14, 26, 16], motion capture with mark-

ers [6], magnetic sensors [20] or multi-view set-ups [58, 21,

6, 12, 31, 53]. Synthetic data is usually obtained by render-

ing a parametric model of the hand interacting with objects.

Even if realism is sufficient when considering a depth sen-

sor [40], the domain gap between synthetic and real RGB

images is often too large to be a valid option on its own. On

the other hand, invasive motion capture methods based on

magnetic sensors and markers make the hand appearance

unrealistic and introduces an undesired bias.

Most of the recent datasets obtained through multi-view

set-ups [58, 21, 6, 12, 31, 53] use the multi-view data to

fit the MANO parametric model [42] that is then consid-

ered as GT hand shape. Although it contains useful priors,

MANO cannot represent very detailed hand shapes [15]. In

our case, we scan the hand using a high-precision scanner,

obtaining a GT shape with sub-millimeter accuracy.

Recent multiview video datasets such as [21, 12, 22] are

impressive in terms of scale, markerless nature, and real-

ism in motion but they lack object variability (10 objects

for [21] and 20 for [12], both object sets from the YCB

dataset [10]). Motions are also limited to the same patterns

like lifting the objects from the table and placing it back or

handing them over to another person. OakInk [53] provides

a much larger variety of objects but with limited motions.

The SHOWMe dataset contains more than 40 objects with

complex movements showing all sides of the object.

Closer to the proposed SHOWMe dataset are Contact-

Pose [6] and HOD [27] which also consider a static HO

configuration during the manipulation. While HOD pro-

vides unregistered 3D scans for a subset of the manipulated

objects, ContactPose provides groundtruth 3D shapes and

poses for both the hand and the object. This dataset is how-

ever limited to objects artifically made textureless, that are

equipped with intrusive fiducial markers for motion cap-

ture purposes. The hand shape is also obtained after fitting

the MANO model. Besides, we found that some frames
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Figure 3: Rendering of the textured mesh for few hand-object configurations of our SHOWMe dataset.

are missing in some sequences leading to discontinuities in

HO motion during manipulation and preventing the use of a

video-based approach. Our SHOWMe dataset offers more

variety in terms of object appearance and grasp types (see

Fig. 3) and, importantly, it is the first dataset that provides

real ground-truth 3D shape for both the hand and the object.

We provide a comparison of SHOWMe to the most relevant

and widely used hand-object interaction datasets in Table 1.

Hand-Object Reconstruction from a single RGB image or

from a monocular video is an extremely difficult task due to

hand-object mutual occlusions, complex hand-object mo-

tion and variability in object shapes. That is why earlier

work [50, 49, 55, 3, 37] considered RGB-D or multi-view

inputs . Recent works on joint HO reconstruction from

monocular RGB images have achieved impressive results.

These works can be generally categorized into parametric

hand model-based methods [26, 42, 11, 33, 30, 39] that as-

sume a known object template (or category [30, 36, 23])

and implicit representation-based methods [29], or a com-

bination of both [54, 13]. While [54] assumes known 3D

templates and obtain both hand and object poses from para-

metric models - using Signed Distance Functions (SDFs)

to help reconstruct shape details for both hand and object,

[13] only uses a parametric model for the hand prior and

reconstruct generic hand-held object without knowing their

3D templates. However, the object reconstruction perfor-

mance is rather poor as it remains unclear how to learn

the implicit representations to reconstruct a large variety

of object shapes with a single model as observed in [29].

To achieve reasonable HO results in a fully object-agnostic

manner, [27] leverages multiple observations of a HO rigid

configuration along a video sequence. The camera mo-

tion is recovered using a hand tracker and an implicit neu-

ral representation-based method is then employed to recon-

struct the SDF and color fields of the hand and object. Sim-

ilarly to this method, we consider a 2-stage pipeline consist-

ing of a rigid registration followed by MVR and benchmark

several baselines for each of these 2 stages.

Other methods have considered hand-object monocu-

lar RGB video as input. [24] performs joint HO recon-

struction by leveraging photometric consistency over time

while in [25], an optimization approach is used. [33] lever-

ages spatial-temporal consistency to select pseudo-labels

for self-training. These methods have the biggest caveat of

requiring the object template mesh at inference time, which

makes the hand-object reconstruction problem a HO 6DOF

pose estimation task. We focus on bench-marking object-

agnostic methods that can reconstruct any HO shapes.

3. The SHOWMe dataset
In this section, we detail the collection procedure in

Sec. 3.1 and the data annotation in Sec. 3.2 (see Fig. 4 for an

overview) while Sec. 3.3 details how GT scans are further

annotated with hand-object information.

3.1. Dataset collection

We instruct the subject to grasp one object according to

different use cases: either a power-grasp, i.e., holding the

object strongly with all fingers, a use-grasp, i.e., holding the

object as if the object was going to be used or a handover-
grasp, i.e., holding the object as if the intent was to give it

to someone else. We then record a video with an RGB-D

monocular camera of the subject showing every part of the

hand-object grasp. In order to ease hand-object segmenta-

tion from the arm, which is not the focus of our dataset, the

subject is wearing a distinctive sleeve and no other human

parts are visible in the video. Once the video is captured,

we ask the subject to maintain the same grasp and capture

the shape of the HO configuration using a sub-millimeter

precision scanner. Fig. 3 shows several captured textured

meshes, highlighting the diversity of objects and grasps.

Hardware details. We acquire the videos using a single

Intel RealSense L515 RGB-D camera [28], and we capture

the GT HO shapes with a Artec Eva 3D scanner [2]. The

camera is calibrated in a pre-processing step and is used to

capture both depth and RGB streams at a rate up to 30fps

and 1280 x 720 resolution. We process the RGB and depth

streams to perform pixel alignment and temporal synchro-

nization. We use the software provided by the supplier for

obtaining an accurate shape from the scans.

Dataset statistics. We collect 96 sequences from 15 differ-
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Figure 4: Hand-Object capture and registration pipeline. We capture a video se-

quence of a hand holding rigidly an object and moving in front of an RGB-D camera,

and we automatically segment the hand-object system in the images. We reconstruct a

precise textured mesh of the hand-object in the exact same pose using an off-the-shelf

3D scanner and register this mesh to each frame to provide ground-truth annotations.

Figure 5: Mesh registration proce-
dure for data annotation. Left: the

pose of the ground truth HO mesh

(light blue) is initialized through

ICP registration with the segmented

depth map. Right: it is then re-

fined with differentiable rendering

and temporal smoothness priors.

ent subjects holding 42 different objects from everyday life,

with various sizes and shapes. The subjects reflect diversity

in gender, color, and hand shape. The different grasp types

(power-grasp, use-grasp, handover-grasp) are evenly repre-

sented. Each video sequence lasts an average of 48 seconds.

This represents a total of 87,540 frames.

3.2. Ground-truth HO 3D shape annotation

We now detail how we obtain HO segmentation in the

RGB images and GT rigid transformation, i.e. the align-

ment between each frame and the 3D mesh obtained from

the scanner, allowing its reprojection onto the image.

Segmentation. We first segment the foreground, e.g. HO

pixels by thresholding the depth values from the input

RGB-D stream. This process segments out the wrist and

the object, but also the arm which we want to ignore, since

it is out of the scope of this work, and it violates the rigidity

assumption. We then segment the arm part by thresholding

RGB pixels values based on the color of the sleeve. Finally,

we combine these two masks to obtain the HO masks which

can be applied on both the RGB frames as well as the depth

values, that we express as back-projected 3D point clouds.

Rigid transformation from scanned mesh to each frame.
For each video, we align all the frames to the scanned GT

mesh. The first step of this alignment consists in perform-

ing a robust rigid Iterative Closest Point (ICP) [56] between

the GT mesh and the aforementioned masked depth point

clouds. We manually 3D align to initialize the first frame

of each sequence and then automatically align the remain-

ing frames using the previous result as initialization for the

next one, to obtain initially aligned poses {Ri|ti} ∈ SE(3),
denoting rotations and translations respectively. We found

that such an alignment is already quite satisfactory but some

outliers remain, due to sensor noise or invalid local minima

of the ICP. We thus refine these aligned poses via a differ-

entiable rendering pipeline that we detail in the following.

For each sequence, let Ii, i ∈ {1..N} denote the N input

frames of resolution H×W , Si be the ground-truth segmen-

tations at the same resolution and M the GT mesh. This

mesh is associated with appearance information acquired

from the sensor such that we can render it onto the image

planes in a differentiable manner. Our objective is to re-

fine the camera poses {R′
i|t′i} = {Riorth(Rcorr

i )|ti+tcorri }
such that the projection of the colored mesh P(M, {R′

i|t′i})
matches the RGB observations for each frame. We express

the pose corrections as offsets over the ICP results. And we

parametrize the rotation corrections Rcorr
i as 2 × 3 matri-

ces, that we orthonormalize with the Gram-Schmidt process

orth() to be rotation matrices, following [7].

More formally, we minimize a masked Mean Square Er-

ror (MSE) between rendered image Îi and observations:

LRGB =
N∑

i

H×W∑

p

Si(p).||Îi(p)− Ii(p)||2. (1)

This loss alone does not properly converge for sequences

where the RGB information is ambiguous. Thus, we add

two regularization terms following two assumptions. We

assume the consecutive rotations and translations to be

smooth, thus we add a smoothing term LSmooth = Lt+LR

as a combination of two functions that minimize the discrete

Laplace operator of transformations, one for rotations LR in

degrees and one for translations Lt in centimeters:

Lt =
N−1∑

i=1

||2t′i − sg(t′i−1 + t′i+1)||
2N

, (2)

LR =
N−1∑

i=1

∠
(
sg(R′

i−1), R
′
i

)
+ ∠

(
R′

i, sg(R
′
i+1)

)

2N
, (3)
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where sg is the stop-gradient operator and ∠ returns the

angle between two rotations. sg is needed to prevent col-

lapsing to unique R and T values in our auto-differentiating

framework.

These smoothing terms forbid camera transformations

that violate the motion smoothness assumption. To incen-

tivize the pose corrections to be small, we add a weight de-

cay regularization term formulated as follows:

Lwd =
∑

i

‖Rcorr
i − I‖2 + ‖T corr

i ‖2 (4)

where I denotes the identity rotation. Finally, the final loss

we optimize is expressed as:

L = LRGB + λSmoothLSmooth + λwdLwd (5)

We did not include a loss for the depth information as it

would have been computationally demanding. We consid-

ered that the ICP-alignment already provided signal from

the depth, that is included in the current formulation in

Lwd. We model the GT geometry in the form of a sparse

voxel grid structure in the differentiable rendering frame-

work of [19], each voxel close to the GT mesh having a

high opacity. Each non-zero voxel is equipped with appear-

ance information initialized from M. As the appearance of

M was obtained using a scanner, it does not correspond ex-

actly to the RGB observations, so we need to compensate

for the appearance to account for sensor-dependent infor-

mation. We thus optimize for both the camera poses offsets

and the appearance of the GT mesh. Please refer to the sup-

plementary material for optimization details.

The effects of this camera refinement procedure are

shown in Fig. 5. Thin structures can hardly be correctly

aligned via ICP as only very few pixels provide depth infor-

mation on those regions. In contrast, the RGB based refine-

ment along with the smoothing components help annotate

more accurate poses. After manual verification, we man-

aged to improve the annotated poses for 47 out of the 96
sequences both quantitatively in terms of LRGB and qual-

itatively. The remaining 49 sequences were already very

accurate and the optimization did not help in this case.

3.3. Parametric Model Annotations

For each sequence, we also provide semantic informa-

tion regarding the depicted grasp. For that purpose, we cap-

tured textured 3D scans of the objects alone that we reg-

ister together with the MANO hand model [42] to the HO

meshes. This provides pose and shape annotations regard-

ing both the hand and the object independently, as shown

in Fig. 6. This additional information could prove useful

for other tasks such as detailed grasp analysis, HRI-related

tasks or even hand-object pose estimation although out of

the scope of this paper. Importantly, the GT MANO kine-

matic poses will allow us to benchmark hand pose estima-

tion methods employed to estimate the rigid transformation.

Figure 6: Hand and Object 3D model annotation. Partial

overlay of the MANO hand model (in red) and a decimated

object mesh (in blue) registered to the textured hand-object

3D scan for different sequences of SHOWMe.

Our registration process is semi-automatic and consists

of three steps. First, we manually estimate the pose of the

object by roughly aligning its mesh to the HO mesh. Sec-

ond, we estimate MANO hand pose and shape parameters

that minimize the squared distance error between 3D key-

points we manually annotated on the HO mesh and corre-

sponding MANO vertices. We use L-BFGS optimization

and the differentiable MANO layer of [26]. Third, we re-

fine MANO parameters and object pose to obtain a precise

registration, by minimizing:

1

|HO|
∑

x∈HO
min (d(x,O), d(x,H)) , (6)

consisting in the mean distance of each point x on the mesh

HO to the closest point on the hand mesh or the object mesh

(denoted respectively H and O). We define the distance
between a point x of 3D normal nx and a mesh M as:

d(x,M) � ‖x− p‖2 + λ‖nx − np‖2, (7)

where p is the point on M closest to x, and where np de-

notes its 3D normal. We choose λ = 1mm2 in practice, and

sample uniformly |HO| = 30k points on the HO mesh to

evaluate Eq. (6). We obtain a sub-millimetre residual error

after optimization. We provide qualitative visualizations of

this registration in Fig. 6 and in the supplementary video.

4. Two-stage reconstruction pipeline
To reconstruct the HO from an RGB video, We use a 2-

stage pipeline in Fig. 2: estimating the rigid transformations

of the HO in the sequence (Sec. 4.1) and MVR (Sec. 4.2).

4.1. Rigid transformation estimation

We evaluate two methods for estimating the rigid trans-

formation of the HO between frames, either using standard

generic SfM toolbox, or using the hand pose as a proxy.

Rigid transformation from a SfM toolbox. We run

COLMAP [44] – SfM software recognized for its robust-

ness and efficiency – to estimate the pose of the camera
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Method
Hand pose Rigid transformation

MPJPE ↓ PA-MPJPE ↓ PCK ↑ Rot error ↓ Trans error ↓ Det. rate (%) ↑

image-based
Minimal Hand [57] 85.4 38.1 10.9 - - -

Frankmocap [43] 39.3 14.9 38.3 - - -

HandOccNet [38] 37.4 14.7 45.7 - - -

DOPE [52] 26.9 12.4 64.6 21.0 0.17 99.0

video-based

DOPE [52] + fixed hand pose 26.2 12.4 69.4 21.5 0.16 99.0

DOPE [52] + median filtering 26.2 12.4 69.4 21.3 0.15 100
DOPE [52] + PoseBERT [5] 27.3 12.3 58.4 20.6 0.15 100
COLMAP [44] - - - 14.6 0.06 78.2

Table 2: MANO Evaluations: Hand pose estimation and associated rigid transformation estimation. The MPJPE and

PA-MPJPE are reported in mm. We use a threshold of 30mm for the PCK. The ‘Rot. error’ is the geodesic distance expressed

in degree with the ground-truth rigid transformation. The ‘Trans error’ is the MSE.

with respect to the HO system across video frames. We

ignore background keypoints using the silhouettes informa-

tion. Rigid transformation from hand pose estimation.
In our particular setup, we can also measure the rigid trans-

formation by estimating the HO pose. As in [27], we as-

sume the object to be unknown and we focus on the hand

keypoints. We first run an off-the-shelf 2D-3D hand pose

estimator, and estimate the rigid transformation between

frames by computing the relative transformation of the hand

3D keypoints. As these are centered around the wrist, while

2D keypoints are estimated in the pixel space, we first run

a PnP algorithm to obtain 3D keypoints in the scene. Then,

we estimate the rigid transformation, i.e. camera poses, be-

tween frames via Procrustes alignment.

4.2. Reconstruction from multiple observations

Reconstruction from robust visual hulls (VH). First, we

consider the silhouette-based formulation from [32] as a

baseline for reconstruction, using GT silhouettes. Follow-

ing their notation, we set α = N/8 and β = N/4.

Reconstruction with fast differentiable rendering
(FDR). We also benchmark the recent method from [47].

They propose a coarse-to-fine differentiable rendering

method, targeted at multiview surface capture problems.

Reconstruction with neural implicit surfaces. We fi-

nally consider the more advanced method proposed in

HHOR [27] that combines NeuS [51], a NeRF represen-

tation where the density radiance field is replaced with

a Signed Distance Field (SDF), with semantic-guided ray

sampling (to focus more on the object) and a camera refine-

ment stage. This step simultaneously optimizes SDF and

camera poses to compensate for imprecise estimations.

5. Experimental results
We now evaluate the 2 stages of the pipeline, namely

rigid registration (Section 5.1) and MVR (Section 5.2).

5.1. Rigid transformation estimation evaluation

We report results for estimating the rigid transformations

either from hand poses or from COLMAP in Tab 2. As the

performance for the hand-based method is likely correlated

with hand pose accuracy, we also evaluate hand 3D pose es-

timation for 4 different image-based methods: (i) Minimal

Hand [57] an easy to use real-time system, (ii) FrankMo-

cap [43], used in IHOI [54] and HHOR [27], (iii) the recent

HandOccNet [38] and (iv) the hand module of DOPE [52]

which proved to perform well under hand-object interac-

tions [1]. We found that DOPE outperforms the other meth-

ods by a large margin and selected it as hand pose estimator.

We also investigate three methods to further smooth the

per-frame DOPE predictions: (i) Exploiting the rigid mo-

tion assumption, by computing a median pose resulting

from an aggregation of all hand poses across the sequence.

(ii) By applying a median filter on pose sequences, with a

sliding window of 5 frames. (iii) Using PoseBERT [5] a

transformer module for smoothing 3D pose sequences. We

found simple baselines (i) and (ii) to perform better.

We found that better hand pose estimations tend to lead

to better rigid transformations but COLMAP performs the

best. However, it yields a lower detection rate compared

to its hand pose counterpart (which always provides an es-

timation), requires accurate segmentation and recovers the

camera poses up to an unknown scale factor. Hand-based

poses naturally embed a rough scale information and the re-

sulting reconstructions have a similar scale to that of GT

meshes, which is an interesting property.

5.2. Hand-object 3D Reconstruction evaluation

In Tab. 3, we report accuracy (acc), completeness

(comp), as well as Fscore for the different reconstruction

methods after Procrustes in rotation, translation and scale

to the GT scans. First, we evaluate the performance of

IHOI [54], a recent single-image template-free HO recon-

struction method. We use the annotated MANO joints for

alignment, which is thus near-perfect. This explains the

overall good results despite severe artefacts in the recon-

structions (see Supp. Mat.). On the other hand, these results

show that a strong hand prior helps for this challenging task.

The reconstruction rate reported in the table is expressed

frame-wise for this method.
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Rigid Recon. Rec. rate Acc.† Comp.† Acc. ratio Comp. ratio Fscore

Transform Method (%) ↑ (cm) ↓ (cm) ↓ @5mm (%) ↑ @5mm (%) ↑ @5mm (%) ↑
GT IHOI [54] 87.3 0.79 1.34 41.7 37.8 39.3

GT VH [32] 93.7 0.42 0.65 67.3 61.6 63.6

GT FDR [47] 95.8 0.35 0.49 75.8 72.0 73.5

GT HHOR [27] 98.9 0.34 0.31 81.0 83.7 82.2

DOPE [52] FDR [47] 92.7 1.02 3.18 31.7 15.7 20.0

COLMAP [44] FDR [47] 76.0 0.64 0.79 39.3 36.2 37.6

COLMAP [44] HHOR [27] 72.9 0.65 0.73 53.7 55.2 54.2
Table 3: Hand-object reconstruction evaluation using either ground-truth rigid transformations or estimated ones. † means

that the metrics are obtained by computing on the reconstructed mesh only, the failing ones are not taken into account, making

direct comparison between different methods unfair. DOPE refers to the variant ‘DOPE + fixed hand pose’ from Tab 2.

Figure 7: Qualitative reconstruction results.

Using GT rigid transforms, all 3 reconstruction methods

lead to an excellent result (Fscore above 60% at 5mm). The

recent HHOR method performs better for all metrics. We

then evaluate the FDR reconstruction when using estimated

rigid transforms, with either hand keypoints or SfM. The

performance drops, e.g. from a Fscore @5mm from 73.5%

to 37.6% using COLMAP, and to 20% using DOPE. Next,

we evaluate HHOR and observed a 16.6% boost compared

to FDR (vs a 9% boost only when using GT rigid trans-

forms). The camera pose refinement corrects noisy cam-

era poses from COLMAP at the expense of a much heavier

computational cost (1 GPU.day per sequence for HHOR vs.

less than a minute for FDR). We show qualitative results

in Fig. 7 and in Supp. Mat. VH cannot reconstruct con-

cavities, e.g., between fingers, while FDR is slightly better.

We can appreciate that the shapes reconstructed by HHOR

are highly-detailed. Note that HHOR [27] reported very

poor results with COLMAP, justifying the use of FrankMo-

cap to estimate the rigid transforms. However, FrankMocap

performs very poorly on our dataset of varied HO interac-

tions. We posit that the unrealistic close-up fingertip grasps

in their HOD dataset allowed accurate hand pose estimates,

and it is not the case at all in our setup.

method
object Acc. ratio Comp. ratio Fscore

size @5mm (%) ↑ @5mm (%) ↑ @5mm (%) ↑

COLMAP+FDR
small 31.78 28.95 30.23

larger 50.05 46.23 47.93

DOPE+FDR
small 35.38 18.58 23.43
larger 29.44 13.96 17.85

Table 4: HO reconstruction evaluation vs. object size.

Detailed analysis. Upon careful analysis, we found that

COLMAP failed or performed poorly on objects of small

size compared to larger-size objects. To corroborate this,

we categorize the objects in our dataset to small and larger

(i.e., large and medium) objects and compute reconstruc-

tion errors on these two sets of objects. Table 4 shows the

reconstruction metrics. We observe that COLMAP leads

to better results on larger objects while DOPE is better for

small objects. For small objects, there may not be suffi-

cient features detected for the matching step which is criti-

cal for camera pose estimation by COLMAP. On the other

hand, small objects lead to less hand occlusions and better

hand joint estimates, which in turn results in robust rigid-

transformation estimation. This strongly emphasizes that a

robust hand key points estimator is key for accurate rigid-

transformation estimation in the case of small objects with

little visual support to perform a standard pose estimation.

6. Conclusion
We introduced the SHOWMe dataset to tackle the prob-

lem of detailed 3D reconstruction of a hand holding rigidly

an unknown object from a monocular video. We then

benchmarked several video-based baselines that follow a

common two-stage pipeline consisting of a rigid registration

step followed by a multi-view reconstruction. Even if high-

quality HO 3D reconstructions are obtained in some cases,

their quality highly depends on the initial rigid transforma-

tion estimates which can be difficult to obtain in case of

texture-less objects or heavy occlusions of the hands. There

is still room for improvement regarding the reconstruction

quality too and we hope SHOWMe will help foster further

research in this direction.
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