
Figure A.1. Collision Prediction and CMOs Identification.

A. Collision Prediction and CMO Identifica-
tion

This section explains our collision prediction method
to identify CMOs. Integrating any other collision predic-
tion algorithm with our proposed path planning algorithm
is straightforward.

Our collision prediction method is a geometric-based al-
gorithm inspired by [12]. The assumptions we make are
similar to the ones we assumed in Section 3.1 regarding
the circular shape and movement of the CMO and VIP, ex-
cept that, to identify CMOs, we assume that the VIP’s circle
′CB is larger than the CMO’s circle ′COi , which means the
rB >> rOi , as it is shown in Fig. A.1. This assumption
is necessary for VIP safety, in particular, to ensure that all
possible threats are detected. Similar to collision avoidance
described in Section 3.2, the critical zone is defined with
the tangents

←−−→
B1O1 and

←−−→
B2O2 of the circles ′CB and ′COi

.
Then, we calculate three angels as follows:

• The angle ∠σ between ABt0 and AB1, which can be
calculated as:

σ = tan−1
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where ′d is the Euclidean distance between the VIP
and the object at t0, which can be expressed as:
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Note that Y ti
B and Y ti

Oi
are ignored (i.e., equal to 0)

since we assume the camera motion at the Y-axis is
negligible as it is vertical to the ground plane.

• The angle ∠θ of the displacement vector from Ot0
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Bt0 , which can be expressed as:
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• The angle ∠ρ of the displacement vector from Ot0
i to

Ot
i , which can be calculated as:
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Based on angles σ, ρ, and θ, if θ − σ ≤ ρ ≤ θ + σ,
means the object is moving inside the critical zone and may
threaten the VIP; thus it is identified as a CMO. Otherwise,
it is a non-CMO object and we ignore it.

B. Derivation of the α angle

We calculate the angle ∠α between AOt1
i and AO1 as

shown in Fig. 2. Obviously, since△AOt1
i O1 and△ABtB1

are similar, there is:
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thus,
|ABt| = rB

rOi
− rB

d, (24)

From the Pythagoras equation, there is:

|AB1| =
√
|ABt|2 − rB2. (25)

Inserting Eq. (24) into Eq. (25), there is:
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For α in△ABtB1, there is:
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thus,

α = tan−1
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C. Implantation
Fig. C.3 shows the prototype’s general architecture,

which consists of four modules: Vision Module (VM), Ob-
jection Detection and Tracking (ODT), CMO Identification
(CMOI), and CMO Status Estimation (CMOSE).

The VM captures 640x480 resolution videos at 30
frames per second using an RGB camera (with 50mm ×
28mm × 0.9mm size and 5g weight) mounted on the VIP’s



Figure C.2. Our Real-World Prototype.

Figure C.3. The General Architecture of Our Prototype.

chest. The camera transmits videos, through a USB cable,
to a laptop (in the VIP’s backpack) with an Intel Core i9-
9900K CPU, an NVIDIA GeForce RTX 2080 GPU, and
64GB RAM. The ODT module detects and tracks moving
objects from the VM video using three modules: pre-trained
CNN-based algorithms, i.e., YOLOv3 [28], and Deep Sim-
ple Online Real-Time (Deep SORT)[32], in which objects’
trajectories and classes are outputs, and our motion detec-
tion algorithm that identifies moving objects and compen-
sates camera motion for accurate estimations.

The CMOI module identifies the CMOs using our colli-
sion prediction method described in Appendix A. CMOSE
receives a CMO’s trajectory to estimate the distance (in m)
from the CMO to the VIP, using a pre-trained DisNet model
[15]. It can also estimate the CMO’s speed using the follow-
ing equation:
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(29)
For accurate estimation, a 2D-to-3D transformation is ap-
plied to recover 3D CMO’s metric position in the Camera
Coordinate System3 (CCS), using the Pinhole Model [14].
Based on the CMO’s estimated distance and speed, CMOSE
calculates the estimated collision time (in s) as follows:

′ttcl =
Zt
O

|vtO|
. (30)

The MinD scheme, and all the above, are implemented
in Python 3.7.0. For Yolov3 and Deep Sort, we used public

3It is a real-world 3D Cartesian coordinate system with the camera as
the origin (0,0,0).

implementation4 based on the TensorFlow-gpu 2.1.0.
For conducting our experiments 5, we first set up an ex-

perimental environment by identifying the radius of ′CB

and ′COi
and the critical zone (described in Appendix A)

on the ground with ropes based on each object class. Ob-
jects were located at different distances (up to 100m) and
moving at varying speeds (up to 60km/h) toward the per-
son mimicking the VIP while holding our prototype to cap-
ture videos (i.e., 140 videos with different lengths up to
32min). Note that, for safety considerations, the person
only held the prototype in scenarios involving slowly mov-
ing objects; otherwise, the vision module was installed on
the ground. For analysis purposes, we manually identify the
ground truth (GT) of CMOs (i.e., moving inside the criti-
cal zone), CMOs’ relative initial-distances to the VIP, and
CMOs’ speeds (i.e., for cars and motorcycles, we use their
own speedometers; for bicycles and pedestrians, we mea-
sured the time taken to travel a predefined distance, then
calculate the speed by dividing the distance by the time
taken). Note that, under each speed, the object was moving
at a uniform fixed speed only to get accurate measurements
(i.e., GT) as advanced precise speed measurement equip-
ment was unavailable. We evaluate the prototype when the
camera was stationary and slowly moving toward objects.

Our prototype’s evaluation results reveal its precise iden-
tification of CMOs, achieving an overall mean Average Pre-
cision (mAP) of 97.19% and an overall mean Average Re-
call (mAR) of 89.23%. Our prototype also accurately es-
timates VIP-CMOs distance, with an overall absolute er-
ror of only −0.75m (note, the negative sign indicating that
the estimated value is less than the actual value, and vice
versa). This error is negligible compared to the overall av-
erage of GT distances, which is 22.57m. Furthermore, the
prototype reliably estimates CMOs’ speed, with an overall
average maximum error of 3.89km/h (the overall average
of GT speeds is 18.92km/h). The evaluation also indicates
that the prototype successfully predicts CMOs’ average col-
lision times, achieving an absolute error of −2.83s (the av-
erage of GT collision times is 11.05s).

In summary, our prototype was able to accurately iden-
tify, estimate the distance to, and predict the collision time
of CMOs. This enables us to build a reliable empirically pa-
rameterized simulator (as possible) to effectively evaluate
our path planning algorithm without compromising health
and safety, as mentioned in Section 4.

4https://github.com/theAIGuysCode/yolov3 deepsort
5Note that this study is approved by the Research Governance and In-

tegrity Team in the same authors’ institution.




