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Figure 1: Snapshot from the supplementary video of the SHOWMe dataset with the ground-truth textured meshes it
contains.

In this supplementary material, we provide more details
about the introduced SHOWMe dataset in Section 1. Sec-
tion 2 then provides a more detailed evaluation analysis
of the results of our two-stage pipeline on the SHOWMe
dataset, as well as the method based on aggregated single-
view reconstruction from IHOI [8].

1. Additional Dataset Information

1.1. Qualitative Visualizations

The attached video, from which we show a snapshot
in Figure 1, highlights the ground-truth 3D shapes with
textures that our introduced SHOWMe dataset contains.
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Figure 2: Grasp categories within SHOWMe.

With the scanner accuracy and resolution up to 0.1mm and
0.2mm respectively, the #vertices and #faces depend on the
size and shape of the objects. Across all GT meshes, #ver-
tices and #faces are in the range (4K to 263K) and (7.5K to
524K) respectively.

1.2. Grasp Variability

SHOWMe offers a large variability in terms of grasp
types as depicted in Figure 2 where 20 of our hand-object
interactions can be classified into different classes of the 33-
grasp taxonomy introduced in [1].



1.3. Rigid transformation - Optimisation details

As explained in Section 3.2 of the main paper, we refine
the camera poses such that the projection of the GT col-
ored mesh matches the RGB observations for each frame
and minimize a loss expressed in Equation (5) of the main
paper.

We implement this optimization in PyTorch [4]. We rep-
resent the scene with a sparse voxel grid of resolution 1283,
that matches the bounding box of M. We use the Adam
optimizer [3] for 250 iterations, with lrrgb = 5.10−1 and
lrcam = 5.10−3 the learning rates for the appearance and
the camera poses respectively. Because it is not computa-
tionally tractable to fully render thousand of frames at ev-
ery iteration, we randomly sample 500 rays from each cam-
era at each iteration. We grid search various λSmooth, λwd

weighting parameters and keep for each sequence the set of
hyperparameters that gave the best (lowest) LRGB value,
considering that this metric is a relevant proxy for the qual-
ity of the pose annotations.

2. Detailed Evaluations of Baselines
In this section, we present in Sec. 2.1 additional qual-

itative results of the various baselines. We then provide
in Sec. 2.2 more detailed and comprehensive experiments
on the different steps of these baselines, before discussing
single-image reconstruction results in Sec. 2.3.

2.1. Qualitative Results

We provide in Fig. 3 successful reconstructions obtained
with VH, FDR and HHOR methods, using camera poses ob-
tained from COLMAP. HHOR recovers much more details
for both the hand and the object compared to VH and FDR.

2.2. Detailed analysis

In this section, we analyze the success and failure cases
of our two baselines used for rigid transformation estima-
tion which plays a crucial role in the final 3D reconstruc-
tion quality. COLMAP [6] camera pose estimation toolbox
takes the set of overlapping images of the same object from
different viewpoints and estimates the intrinsic and extrin-
sic camera parameters. This involves 2D images feature
detection, extraction, and feature-matching steps. Figure 6
shows the example of detected features in two viewpoints
and corresponding matched features. However, we observe
that COLMAP fails to estimate the camera poses on roughly
20% of the sequences. An example of complete failure
cases can be seen in Fig. 4 where COLMAP could not suc-
cessfully output camera poses. This figure also shows the
reconstruction of DOPE+FDR and DOPE +HHOR, and il-
lustrates the robustness of a hand-based camera estimation
approach, at the cost of a loss in reconstruction quality. In
other cases, camera poses are estimated by COLMAP but

Figure 3: Hand-Object Reconstructions using COLMAP
for camera pose estimation followed by VH, FDR and
HHOR methods for reconstruction. From left to right:
GT, COLMAP+VH, COLMAP+FDR, COLMAP+HHOR.
Please see the video for more qualitative results.

Figure 4: Hand-Object Reconstruction using
DOPE+FDR and DOPE+HHOR.For these exam-
ples, COLMAP could not estimate any valid camera poses.

are not sufficiently accurate to perform reasonable recon-
struction as seen in Fig. 5.
Object Size Analysis. Upon careful analysis in the main
paper, we found that reconstructions based on COLMAP
failed or performed poorly on objects of small size com-
pared to larger-size objects while using DOPE led to bet-
ter performance for small objects. To corroborate this, we



Figure 5: Hand-Object Reconstruction failure examples
obtained using COLMAP as pose estimator. The poses es-
timated are not accurate enough to allow for reasonable re-
construction results.

(a) (b)

(c)

Figure 6: Visualization of COLMAP detected features on
(a) frame 1 and (b) frame 264. We show the corresponding
matched features in (c).

manually label each object as small or large and compute
rigid transformation estimation qualities and reconstruction
errors on the two sets (small size set and larger size set) of
objects. Table 1 and 2 shows the rigid transformation accu-
racy averaged across sequences within SHOWMe for three
different level of camera pose precision (i.e., after binning
camera estimates with respect to translation and rotation er-
rors). COLMAP shows comparable average performance
for both types of objects but a much higher variance in
camera pose quality for small objects, meaning that it com-
pletely fails for some sequences. On the other hand, DOPE
clearly provides more accurate camera estimates for small
objects. Using HHOR as a reconstruction method does not
compensate for mediocre camera estimates and the same
observation can be made (Table 3).
Object Texture Analysis. We also analyze the success and
failure cases of our baselines used for rigid transformation
estimation and 3D reconstruction with respect to the tex-

object size Per-Frame Relative Pose Quality (%) ↑
@(2cm&4◦) @(5cm&10◦) @(10cm&20◦)

small 9.96±15.60 36.90±33.57 74.50±31.20
larger 6.58±5.17 28.10±20.85 69.50±25.21

Table 1: Rigid transformation evaluation obtained from
COLMAP [6] with the per-frame relative pose quality, i.e.
the percentages of frames where the error is below a given
threshold, averaged across sequences.

object size Per-Frame Relative Pose Quality (%) ↑
@(2cm&4◦) @(5cm&10◦) @(10cm&20◦)

small 2.06±2.13 14.20±9.59 40.10±19.70
larger 1.70±1.82 9.75±6.66 30.80±17.50

Table 2: Rigid transformation evaluation obtained from
hand joints estimates from DOPE [7] with the per-frame
relative pose quality, i.e. the percentages of frames where
the error is below a given threshold, averaged across se-
quences.

ture quality of the objects in the sequence. We have empiri-
cally observed that COLMAP camera pose estimation qual-
ity reduces drastically for less textured objects, i.e., with a
rather uniform texture. In order to verify this observation,
we performed an experiment where we manually catego-
rize all the hand-object sequences into two types ”textured”
and ”less-textured” objects and evaluate the rigid transfor-
mations estimated with COLMAP in Table 4. COLMAP
shows comparable average performance for both types of
objects but a much higher variance in camera pose quality
for less-textured objects, meaning that it completely fails
for some sequences. We also evaluate the reconstruction
baseline COLMAP+HHOR for the two sets and found that
acc. ratio, comp. ratio and Fscore all degrade by roughly
15% as shown in Table 5.

Additional Analysis. In Figure 7, we show qualitative re-
sults of the DOPE hand keypoint detector, in both success-
ful (left) and failure cases (right). We can see that in the
case of a frame without large occlusion, the hand pose is
well estimated. However, when large occlusions occur, the
detector wrongly estimates the hand pose, which impacts
the camera pose estimation.

Finally, we provide a detailed study of the F-Score over
the whole dataset for various setups in Fig. 8. We can
see that both MVS methods, VH and FDR attain good Fs-
core using the annotated poses (GT) while IHOI tends to
lack accurate and complete reconstructions with the 5mm
threshold. Also, DOPE-based rigid transformation estima-
tions tend to provide worse reconstruction scores but are
much more reliable than COLMAP, which fails completely
on more sequences.



method object acc. ratio comp. ratio Fscore
size @5mm (%) ↑ @5mm (%) ↑ @5mm (%) ↑

COLMAP+HHOR small 32.87 33.57 33.07
larger 54.35 56.14 55.00

DOPE+HHOR small 40.87 42.48 40.96
larger 37.67 41.03 38.73

Table 3: Hand-Object Reconstruction evaluation of
HHOR [2] vs object size.

texture type Per-Frame Relative Pose Quality ↑
@(2cm&4◦) @(5cm&10◦) @(10cm&20◦)

textured 6.69±4.6 29.2±21.1 71.5±25.9
less textured 9.92±15.8 33.7±30.9 73.1±28.5

Table 4: Rigid transformation evaluation obtained from
COLMAP [6] with the per-frame relative pose quality, i.e.
the percentages of frames where the error is below a given
threshold, averaged across sequences.

texture type acc. ratio comp. ratio Fscore
@5mm (%) ↑ @5mm (%) ↑ @5mm (%) ↑

textured 51.87 47.64 49.47
less-textured 36.19 33.06 34.46

Table 5: Hand-Object Reconstruction evaluation of
COLMAP + HHOR [2] vs object texture.

2.3. Single-image HO reconstruction

We provide in Fig. 9 some qualitative reconstruction re-
sults on a few objects of the dataset. In Section 5.2 of
the main paper, we compare the single-view reconstruction
method of Ye et al. [8] (IHOI) to multiview baselines that
take the whole video sequence as input. For a fairer com-
parison, we slightly modify IHOI for video processing: the
method is run independently on multiple, evenly-distributed
frames of the sequence. From these single-image recon-
structions, we extract the raw object-SDFs (signed dis-
tance functions), prior to the meshing step, and average
them directly in the canonical reconstruction space, cen-
tered around the wrist. Figure 10 shows the effect of this
temporal aggregation of SDFs on different objects. In Ta-
ble 6, we show a quantitative comparison of this modified
approach, dubbed IHOI+temp, with baseline IHOI, follow-
ing the evaluation setup presented in Section 5.2 (and Table
3) of the main paper.

3. Limitations
As stated in the main paper, we assume that the hand re-

mains static with respect to the object i.e. the hand pose
remains the same with respect to the object throughout the
sequence. This assumption enabled to do category-agnostic
hand-object reconstruction. However, this limits the re-
construction baselines to dynamic hand-object manipula-

Figure 7: 2D hand keypoints results from DOPE. The left
column shows successful examples, typically when there is
little occlusion by the object, while the right column shows
overall failure cases which occur when the objects largely
occlude the hand.

tion scenarios. In summary, this assumption is reasonable in
terms of application and an important step towards dynamic
object-agnostic HO reconstruction.
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