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(a) (b)

Figure 1: Overview of the training and blending process. (a) Given a NeRF scene FO
θ , our pipeline trains a NeRF generator

model FG
θ , initialized with FO

θ weights and guided by a similarity loss defined by a language-image model such as CLIP

[48], to synthesize a new object inside a user-specified ROI. This is achieved by casting rays and sampling points for the

rendering process [39] only inside the ROI box. Our method introduces augmentations and priors to get more natural results.

(b) After training, we render the edited scene by blending the sample points generated by the two models along each view

ray.

Abstract

Editing a local region or a specific object in a 3D scene
represented by a NeRF or consistently blending a new re-
alistic object into the scene is challenging, mainly due to
the implicit nature of the scene representation. We present
Blended-NeRF, a robust and flexible framework for editing a
specific region of interest in an existing NeRF scene, based
on text prompts, along with a 3D ROI box. Our method
leverages a pretrained language-image model to steer the
synthesis towards a user-provided text prompt, along with
a 3D MLP model initialized on an existing NeRF scene
to generate the object and blend it into a specified region
in the original scene. We allow local editing by localiz-
ing a 3D ROI box in the input scene, and blend the con-
tent synthesized inside the ROI with the existing scene using
a novel volumetric blending technique. To obtain natural
looking and view-consistent results, we leverage existing
and new geometric priors and 3D augmentations for im-
proving the visual fidelity of the final result. We test our
framework both qualitatively and quantitatively on a vari-
ety of real 3D scenes and text prompts, demonstrating real-

istic multi-view consistent results with much flexibility and
diversity compared to the baselines. Finally, we show the
applicability of our framework for several 3D editing ap-
plications, including adding new objects to a scene, remov-
ing/replacing/altering existing objects, and texture conver-
sion.

1. Introduction
In the last few years we have witnessed exciting devel-

opments in neural implicit representations [56, 60, 15, 61,

35, 62]. In particular, implicit representations of 3D scenes

[57, 37, 55, 27, 46, 39, 5, 4] have enabled unprecedented

quality and reliability in 3D reconstruction and novel view

synthesis. The pioneering work of Mildenhall et al. [39]

introduced NeRFs, MLP-based neural models that implic-

itly represent a scene as a continuous volume and radiance

fields from a limited number of observations, producing

high-quality images from novel views via volume render-

ing.

However, editing a scene represented by a NeRF is non-

trivial, mainly because the scene is encoded in an im-
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”A DLSR photo of dunes of sand.” ”A DLSR photo of ice and snow.” ”A DLSR photo of dunes of sand.” ”A DLSR photo of ice and snow.”

Figure 2: Large object replacement. Here we preform object replacement to the blender ship scene by localizing the ROI

box to include the sea and the bottom of the ship and training our model to steer the edit towards the given text prompts.

plicit manner by the model’s weights, in contrast to ex-

plicit representations, such as meshes, voxel grids, or point

clouds. NeRFs offer no explicit separation between the

various components that define the object, such as shape,

color, or material. In contrast to local edits in images, e.g.,

[3, 2, 6, 42, 51, 23, 8], where the edit is done in pixel space

with all the required information appearing in a single view,

editing a NeRF-represented scene is more challenging due

to the requirement for consistency across multiple views be-

tween the new and the original NeRF scenes.

The first works attempting to edit NeRF scenes focused

on the removal of local parts, changing color, or shape trans-

fer on one class of synthetic data, guided by user scrib-

bles or latent code of another object in the class [34]. In

CLIP-NeRF [64], editing of the entire scene is preformed

by text guidance and displacements to the latent represen-

tation of the input. They mainly focus on synthetic objects

from one class, or global color changes for realistic scenes.

Kobayashi et al. [28] perform semantic decomposition of

the scene components by learning a feature field that maps

each 3D coordinate to a descriptor representing a semantic

feature, and allow zero-shot segmentation for local editing

on a specific semantic class. Alternatively, Benaim et al. [7]

suggest separating the volumetric representation of a fore-

ground object from its background using a set of 2D masks

per training view. These works have limited localization

abilities and focus on the separation methods. They demon-

strate manipulations such as object removal, color change,

and transformations such as shift, rotation, and scale.

In this work, we present our approach for ROI-based

editing of NeRF scenes guided by a text prompt or an im-

age patch that: (1) can operate on any region of a real-world

scene, (2) modifies only the region of interest, while pre-

serving the rest of the scene without learning a new fea-

ture space or requiring a set of two-dimensional masks, (3)

generates natural-looking and view-consistent results that

blend with the existing scene, (4) is not restricted to a spe-

cific class or domain, and (5) enables complex text guided

manipulations such as object insertion/replacement, objects

blending and texture conversion.

To this end, we utilize a pretrained language-image

model, e.g., CLIP [48], and a NeRF model [39] initialized

on existing NeRF scene as our generator for synthesizing a

new object and blend it into the scene in the region of inter-

est (ROI). We use CLIP to steer the generation process to-

wards the user-provided text prompt, enabling blended gen-

eration of diverse 3D objects.

To enable general local edits in any region, while pre-

serving the rest of the scene, we localize a 3D box inside a

given NeRF scene. To blend the synthesized content inside

the ROI with the base scene, we propose a novel volumet-

ric blending approach that merges the original and the syn-

thesized radiance fields by blending the sampled 3D points

along each camera ray.

We show that using this pipeline naively to perform the

edit is insufficient, generating low quality incoherent and

inconsistent results. Thus, we utilize the augmentations

and priors suggested in [26] and introduce additional pri-

ors and augmentations, such as depth regularization, pose

sampling, and directional dependent prompts to get more

realistic, natural-looking and 3D consistent results. Finally,

we conduct extensive experiments to evaluate our frame-

work and the effect of our additional constraints and priors.

We perform an in-depth comparison with the baseline and

show the applicability of our approach on a series of 3D

editing applications using a variety of real 3D scenes.

2. Related Work
Neural Implicit Representations have gained much

popularity in the fields of computer vision and graphics in

both 2D and 3D [56, 57, 55, 46, 37, 60, 15, 27]. Among

their advantages is their ability to capture complex and di-

verse patterns and to provide a continuous representation of

the underlying scene. They are resolution independent, yet

compact, compared to explicit representations of high reso-

lution 2D images, or meshes and point clouds in 3D. NeRFs

[39, 4, 5] learn to represent a 3D scene as a continuous vol-

ume and radiance fields using the weights of a multilayer

perceptron (MLP). Given a 3D position x and view direc-

tion (θ, φ), NeRF outputs the density σ and color c at x.
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Novel views of the scene can thus be rendered by accumu-

lating the colors and densities along a view ray r(t) passing

through each pixel, using an approximation to the classical

volume rendering equation using the quadrature rule [36]:

C(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, Ti = exp(−
i−1∑
j=1

σjδj)

(1)

where δi = ti+1 − ti is the distance between adjacent sam-

ples and Ti can be interpreted as the degree of transmittance

at point xi along the ray. The inputs are embedded into a

high-dimensional space using a high frequency sinusoidal

positional encoding γ(x) to enable better fitting for high

frequency variations in the data [49, 63]:

γ(x) = [cos(2lx), sin(2lx)]L−1
l=0 (2)

NeRF 3D Generation. NeRFs inspired follow-up works

to synthesize new NeRF objects from scratch. The first

methods used NeRF combined with GANs [1, 19, 21] to

design 3D-aware generators [20, 10, 14, 43, 44, 54, 72].

GRAF [54] adopts shape and appearance codes to condi-

tionally synthesize NeRF and GIRAFF [44], StyleNeRF

[20] utilizes NeRF to render features instead of RGB col-

ors and adopt a two-stage strategy, where they render low-

resolution feature maps first and then up-sample the feature

maps using a CNN decoder. These models are category-

specific and trained mostly on forward-facing scenes.

More recent works utilize the progress in contrastive rep-

resentation learning [13, 48, 69, 31, 30], which enables easy

and flexible control over the content of the generated objects

using textual input. In Dream Fields [26], frozen image-

text joint embedding models from CLIP [48] are used as a

guidance to a NeRF model that generates 3D objects whose

renderings have high semantic similarity with the input cap-

tion. To improve the visual quality, they introduce geomet-

ric priors and augmentations to enforce transmittance spar-

sity, object boundaries and multi-view consistency. In this

paper, we utilize some of the priors from Dream Fields [26]

and introduce improved augmentations and priors to edit ex-

isting NeRF scenes.

More recent works utilize the progress in diffusion mod-

els [24, 58, 59] and specifically in text-conditioned diffusion

models [51, 52, 53]. DreamFusion [47] and its follow-ups

[65, 38, 32, 50] optimize a NeRF model by replacing CLIP

with score function losses using pretrained text-conditioned

2D diffusion-models applied on many different views of the

generated scene to synthesize 3D objects aligned with the

input text. These models synthesize new objects without

considering how they can be inserted and blend into an ex-

isting scene.

Editing NeRFs. The pioneering works [34, 64] were the

first to tackle the challenge of editing NeRF scenes. They

both define a conditional NeRF, where the NeRF model is

conditioned on latent shape and appearance codes, which

enables separately editing the shape and the color of a 3D

object. EditNeRF [34] only enables addition and removal

of local parts or color changes guided by user scribbles and

is limited to only one shape category. In ObjectNeRF [67]

they enable editing tasks such as moving or adding new ob-

jects to the scene by introducing a neural scene rendering

system with a scene branch which encodes the scene ge-

ometry and appearance and object branch which encodes

each standalone object. CLIP-NeRF [64] leverage the joint

language-image embedding space of CLIP [48] to perform

text or image guided manipulation on the entire scene. Dur-

ing the optimization it uses two code mappers for the shape

and appearance that receive the CLIP embedding and out-

put shape and appearance codes which steer the input of

the model and the model weights to apply the edit. The

manipulation capabilities are demonstrated mainly on syn-

thetic objects from one class and on global color changes

for realistic scenes.

Later works focused on geometric edits [68], global style

transfer [11, 12, 16, 25], recoloring [66, 18], and disen-

tanglement of the scene to enable local edits [28, 7, 71].

Kobayashi [28] decomposes the scene to its semantic parts

by training the NeRF model to learn a 3D feature field us-

ing supervision of pre-trained 2D image feature extractors

[9, 29] in addition to learning of the volume density and the

radiance field. After training, the model can perform zero-

shot segmentation for local editing of a specific semantic

class. Benaim et al. [7] disentangle the volumetric repre-

sentation of a foreground object from its background using

a set of 2D masks specifying the foreground object in each

training view. They train two models for the full scene and

the background scene, and subtract the background from the

full scene in order to get the foreground. In both works the

localization on the region of interest is incomplete and not

flexible enough (does not enable editing parts of objects,

empty regions or blending new densities into the area of

existing object). They demonstrate manipulations such as

object removal, transformations such as shift rotation and

scale, and only basic optimization-based edits. Our work

focuses on blending text generated objects with volume and

color into any region of interest of an existing scene with

more freedom and flexibility and without compromising on

quality and visibility. For information regrading concurrent

works, please refer to the supplement.

3. Method
Given an existing 3D scene xo represented by a NeRF

model FO
θ , and a 3D region of interest (ROI), indicated by

a box B localized inside the scene, our goal is to modify

the scene inside the ROI, according to a user-provided text

prompt. In other words, we aim to obtain a modified scene

xe, where xe � B is consistent with the user prompt from
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α = 0 α = 0.5 α = 2 α = 4 α = 10

Figure 3: Distance Smoothing Operator. We demonstrate our suggested smoothing operator in eq. (5) on a range of α
values, When α is zero all the weight goes to the edited scene, and as we increase α, more attention is given to closer points

from the original scene.

any point of view, while matching xo outside the box (xe �
(1−B) = xo � (1−B)).

To preform the edits inside the ROI we initialize a 3D

MLP model FG
θ with the weights of the original scene

model FO
θ and steer the weights towards the given prompt

using a pretrained language-image model, such as CLIP

[48]. We enable local edits in any region of the scene

xo using a simple GUI for localizing a 3D box inside the

scene by rendering the original NeRF model FO
θ from any

view and using the output depth map of the model to ob-

tain 3D understanding of the scene. Using the given ROI

box we can disentangle the scene inside the box and outside

it by decomposing the radiance fields accordingly. To ob-

tain consistent results from any view direction, we perform

volumetric blending of the original and the edited radiance

fields by sampling 3D points along each camera ray r in

both FO
θ and FG

θ , and blending the samples while account-

ing for their densities, colors and distance from the center

of the scene.

To get more realistic and natural-looking results we

present existing [26] and novel augmentations and priors

such as transmittance and depth regularization, background

augmentations, pose sampling and directional dependent

prompts. An overview of our approach is depicted in Fig-

ure 1.

In Section 3.1 we describe our 3D object generation and

blending process, we continue and present the model objec-

tives and proposed priors in Section 3.2.

3.1. Image-Text driven 3D synthesis and blending

Given a 3D scene represented by a NeRF model FO
θ , an

ROI box B, and a camera pose, we use a duplicate of FO
θ ,

FG
θ as our starting point for generating the content of B.

The rest of the scene is preserved by rendering only the rays

which have sample points inside B. The training of FG
θ is

guided by a language-image model, e.g., [48, 31, 30, 69] to

align the content generated inside B with a user-provided

text prompt.

To get a smoothly blended result, we query both models

FO
θ , FG

θ using the same set of rays. For sample points out-

side the ROI, we use the density and color inferred by FO
θ ,

while for points inside the ROI, we blend the results of the

two radiance fields using one of two modes, depending on

the type of the edit: adding a new object in empty space, or

completely replacing an existing one, vs. adding an object

in a non-empty area.

FG
θ is optimized using guidance from a language-image

model, such as CLIP [48], by aiming to minimize the cosine

similarity score between the user-provided text prompt y
and rendered views of the generated content inside the ROI

box, IROI :

Lsim = −Eimg(IROI)
TEtxt(y), (3)

where Eimg, Etxt are the image and text encoders of the

image-language model. During optimization, we render

IROI using only the 3D sample points contained inside B
by sampling only along rays r that pass through the box and

setting the density to zero for all sample points outside B,

according to eq. (1):

C(r) =

{∑
xi∈B Ti(1− e−σiδi)ci, ∃xi ∈ r s.t. xi ∈ B

0 , otherwise

(4)

After training, we blend the scenes inside and outside

the ROI with the same set of rays by querying both FO
θ and

FG
θ where the points inside the box are rendered by FG

θ

and the points outside the box are rendered by FO
θ . To get

smooth blending between the two scenes we suggest dis-

tance smoothing operator per point inside the box consid-

ering its distance from the center of the ROI scene (center

of mass, computed during training) and alpha compositing

the density and color of the two scenes inside the ROI as

follows:

f(x) = 1− exp(
−αd(x)

diag
) (5)

σblend(x) = f(x) · σO(x) + (1− f(x)) · σG(x)
cblend(x) = f(x) · cO(x) + (1− f(x)) · cG(x)
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where σO and σG are the densities returned by each model,

d(x) is the Euclidean distance of a point x inside the ROI

from the center of the scene, diag is the box diagonal and

α is a hyperparameter which controls the strength of the

blending, as can be seen intuitively in Figure 3. The re-

sulted raw densities and RGB values inside and outside the

ROI are then blended along each ray using eq. (1) to get the

current rendered view of the edited scene xe.

Object Insertion/Replacement. In this mode, a new

synthetic object is added into an empty region of the scene,

or entirely replaces another existing object inside the ROI.

In this mode, we use the pipeline described above, when

inside the ROI we consider only the radiance field of FG
θ

during training. After training, we blend the two scenes as

described above.

Object Blending. In contrast to the above mode, here

we aim to blend the new content with the existing scene in-

side the ROI. We query both the original FO
θ and the edited

FG
θ fields inside the box and blend the resulting colors and

densities at each ray sample. To blend the sample colors,

we first compute the alpha values for each point xi on the

ray separately from each model:

αO(xi) = 1− exp(φ(σO(xi)) · δi)
αG(xi) = 1− exp(φ(σG(xi)) · δi)

(6)

where φ is the activation function enforcing that these den-

sity values are non-negative. To blend the colors cO and

cG obtained from the two models, we use the above alpha

values, followed by a sigmoid function:

c(xi) = S(
cO(xi) · αO(xi) + cG(xi) · αG(xi)

ε+ αO(xi) + αG(xi)
) (7)

where ε is a small constant, for numerical stability and S is

the sigmoid function.

For the density of the blended sample, we consider two

options, which have different impact on the results of the

blending:

σ(xi) = φ(σO(xi) + σG(xi)) (8)

σ(xi) = φ(σO(xi)) + φ(σG(xi)) (9)

i.e., summing the densities inside or outside the activation

function. When using eq. (8) we are summing inside the ac-

tivation function thus allowing the generator FG
θ to change

the original scene density and even remove densities (if

σG(xi) < 0), while in eq. (9) we allow FG
θ to only add new

densities to the scene. We can choose either of these two

options depending on the edit we wish to apply. We then

compute the joint transmittance and alpha values according

to eq. (1). The resulting blended image IROI is then used

to guide FG
θ during training by measuring its similarity to

the input caption using eq. (3). The blending process af-

ter training is the same as in Object Insertion/Replacement

mode. An illustration of our blending modes on the blender

Lego scene is presented in Figure 4.

3.2. Objectives and Priors

Previous works [26, 7, 64] and our experiments indi-

cate that a scene representation depending on similarity loss

alone (eq. (3)) is too unconstrained, resulting in a scene that

is not visually compatible to a human, but still satisfies the

loss. Thus, we utilize the priors and augmentations men-

tioned in DreamFields [26] and suggest additional priors to

get more realistic results.

Pose Sampling. CLIP-NeRF [64] shows the multi-view

consistency evaluation of CLIP [48]. When using differ-

ent camera poses and rendering different views of the same

object, they still have high similarity, in contrast to dif-

ferent objects which have low similarity even in identical

view. DreamFields [26] shows that sampling different cam-

era poses is a good regularizer and improves the realism of

the object geometry. Thus, each iteration we sample a ran-

dom camera pose around the scene depending on the scene

type (360◦ and forward-facing scenes) including its azimuth

and elevation angles (θ, φ). We found it beneficial to be rel-

atively close to the object during training to get a bigger

object in the rendered view, which in turn yields larger gra-

dients from eq. (3). We set the initial distance d from the

ROI according to the camera AFOV = 2γ and the max-

imum dimension of the box emax and we randomly sample

the radius r around this value:

d =
emax

2 tan(γ/2)
(10)

Background Augmentation. DreamFields [26] note

that when using white or black background during opti-

original scene sum in activation sum out activation

Figure 4: Blending Modes. Guided by “plant with green

leaves and white and blue flowers”. When using eq. (8)

(second column), we allow FG
θ to change the density of

the original scene, in this case removing parts of the wheel.

When utilizing eq. (9) (third column), we can only add ad-

ditionally density to the scene, so the plant warps around

the wheel without changing it.
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mization, the scene populates the background, and eventu-

ally we get a diffused scene. Thus, we use the same random

backgrounds as in DreamFields: Gaussian noise, checker-

board patterns and random Fourier textures from [41] to get

more sharp and coherent objects.

Directional Dependent Prompts. Due to the fact that

there’s no constraint on FG
θ to describe the object differ-

ently in different views, we concatenate to the original cap-

tion a text prompt depending on the current view. For more

details, please refer to the supplementary materials.

Transmittance loss. Same as in DreamFields [26], in

order to get more sparse and coherent results we encourage

the generator to increase the average transmittance of the

scene inside the box by adding a transmittance loss to the

generator objective:

LT = −min(τ, mean(T (P ))) (11)

Where mean(T (P )) is the average transmittance of a ren-

dered view from pose P and τ is the max transmittance.

Depth loss. When blending in forward-facing scenes

(such as LLFF dataset [40]) and due to the limited view-

ing intervals, for some captions we get a flat billboard ge-

ometry effect and the resulting edit does not seem to have

a volume. We encourage the generator to synthesize vol-

umetric 3D shapes by adding a depth loss to the generator

objective:

LD = −min(ρ, σ2(D(P ))) (12)

Where σ2(D(P ))) is the variance of the disparity map of

a rendered view from pose P and ρ is the max variance

we allow during training. We gradually introduce LT and

LD during training using annealing strategy to prevent com-

pletely transparent or amorphous scenes. In summary, the

final objective for the generator FG
θ is:

Ltotal = Lsim + λTLT + λDLD (13)

Where λT , λD are the weights for LT , LD accordingly. For

more information on implementation details and hyperpa-

rameters, please refer to the supplement.

4. Experiments
In Section 4.1 we begin by comparing our method both

qualitatively and quantitatively to the baseline Volumetric

Disentanglement for 3D Scene Manipulation [7]. Next,

in Section 4.2 we demonstrate the effect of our suggested

priors and augmentations on improving fidelity and visual

quality. Finally, in Section 4.3 we demonstrate several ap-

plications enabled by our framework.

4.1. Comparisons

Our qualitative comparisons to Volumetric Disentangle-

ment [7] are shown in Figure 5. Since the implementation

(a) “aspen tree”

(b) “strawberry”

Figure 5: Comparison to [7] for object replacement. We

compare our editing capabilities to [7] in the fern scene

from llff dataset [40]. The left and right images in each

row are [7] and ours, accordingly. Our proposed method ex-

hibits more realistic results that agrees better with the text.

For example the edit for the text “aspen tree” indeed looks

like a trunk of an aspen tree in our edit.

Method CLIP

Direction

Similarity↑

CLIP

Direction

Consistency↑

LPIPS↓

[Benaim 2022] 0.128 0.736 0.3
Ours 0.143 0.787 0.024

Table 1: Quantitative Evaluation. Quantitative compari-

son to [7] using the metrics described in Section 4.1. Our

method demonstrates edits that are better align to the input

captions and consistent between views, while preserving the

background of the scene.

of [7] is not currently available, we preform the compar-

isons using the examples included on their project page 1.

As can be seen from the results in Figure 5, our results ex-

hibit richer and more natural colors and are aligned better

with the text. To test these observations quantitatively, in

Table 1 we compare our proposed method to [7] using three

metrics:

(1) CLIP Direction Similarity, a metric originally intro-

duced in StyleGAN-NADA [17], measures how well the

change between the original and edited views is aligned

with the change in the texts describing them (in the CLIP

1https://sagiebenaim.github.io/volumetric-disentanglement/
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(a) Without Depth Loss

(b) With Depth Loss

Figure 6: Depth Loss Impact. Comparison of synthesiz-

ing a “donut covered with glaze and sprinkles” from COCO

dataset [33] on a limited view scene with and without our

suggested depth prior. The first column display a view of

the edited scenes and the second column displays the dis-

parity map of the synthesized objects. In (a) the results are

more flat, which can be clearly seen in the disparity map.

embedding space).

(2) CLIP Direction Consistency, introduced by Haque

[22], measures the cosine similarity of the CLIP embed-

dings of a pair of adjacent frames. For each edit, we take 6

consecutive frames, compute the metric for each consecu-

tive pair, and average the results among all pairs.

Finally, we use (3) LPIPS [70] to measure the differ-

ence between the original and edited scenes, with the ROI

masked, for comparing the background preservation. As

can be seen from Table 1, our model outperforms the base-

line in all metrics, which implies that our generated objects

match better to the input text captions, they are more con-

sistent from any view and, on the other hand, our method

manages to keep the rest of the scene untouched.

4.2. Ablation Study

To show the importance of our proposed augmentations

and priors, we use the R-Precision score [45] using both

CLIP and BLIP [48, 31, 30] as the metric language-image

model to measure how well the generated images align with

the true caption. Similar to DreamFields [26], we use a ran-

domly selected subset of 20 samples (due to time and re-

sources limitations) from the object-centric dataset which

contains 153 images and captions from COCO dataset [33]

as our ground truth. The objects are synthesized using the

given captions and blended into an empty region in the llff

Method CLIP BLIP

R-Precision ↑ R-Precision ↑
COCO GT 0.933 0.98
Ours(full pipeline) 0.86 0.8
Ours(no dir prompts) 0.85 0.8
Ours(no depth prior) 0.81 0.78

Table 2: Ablation study. We test our proposed priors and

augmentations on a subset of captions and images from

COCO dataset [33]. The CLIP and BLIP R-Precision scores

utilize CLIP B-32 and BLIP2 architecture accordingly. The

first row shows the scores of the GT COCO image, the sec-

ond row shows our method scores using all the priors and

augmentations as described in Section 3 and the last two

rows present the scores when taking out the directional de-

pendent prompts and the depth loss.

fern scene. Due to the fact we are training on the same CLIP

model, we test our results with a different language-image

model, BLIP2 [30]. The results of both metrics are pre-

sented in Table 2. The directional dependent prompts seem

to only slightly improve the results, probably due to the

forward-facing nature of the scene. When rendering from

limited camera positions and viewing angles and without

our proposed depth priors, the results deteriorate. To test

this conclusion visually, in Figure 6 we compare the task

of inserting a new object into an empty region of the fern

llff scene [40] with and without the depth loss. As can be

seen from the figure, when using our proposed depth prior,

the generated object has more volume and looks more natu-

ral and consistent. For additional details, please refer to the

supplement.

4.3. Applications

In this section, we demonstrate the applicability of our

framework for several 3D editing scenarios.

New Object Insertion. Using the method described in

Section 3, and by placing the ROI box in an empty space

of the scene, we can synthesize a new object given a text

prompt and blend it into the original scene. Visual exam-

ple of this application can be seen in Figure 6 and in the

supplement.

Object Replacement. To replace an existing object in

the scene with new synthesized content, we place the ROI

3D box in the required area (enclosing the object to be re-

placed), and perform the training process described in Sec-

tion 3. In Figure 2 we demonstrate the replacement of the

sea in the blender ship scene, while in Figure 5 we replace

the fern’s trunk.

Blending of Objects. To preform blending between the

original and the generated object inside the ROI, we utilize

the object blending process described in Section 3. In Fig-

ure 4 and Figure 8 we demonstrate this blending on blender
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Original Scene “burning pinecone” “iced pinecone” “pinecone made of pink wool”

Original Scene “vase made of glass” “vase made of stone” “water paint of a vase”

Figure 7: Texture Editing. We can change only the texture of an object by freezing the layers responsible for the density

and training only the layers that impact the color of the scene. To get a smooth blending, we utilize eq. (5) to blend the scene

inside and outside the ROI.

lego and llff fern scenes.

Texture Editing. We enable texture editing by training

only the color-related layers of FG
θ and freezing all the other

layers in a similar way as in [64]. For seamless blending

results, we utilize eq. (5). In Figure 7 we demonstrate this

edit method on 360 scenes. For additional results and videos

please refer to supplement.

”a green and yellow bananas”. ”a clusters mushrooms”.

Figure 8: Blending Densities Inside Activation. We

demonstrate our suggested blending procedure for blend-

ing the original and synthesized objects inside the ROI in

llff fern scene [40] using eq. (8) for summing the densities.

5. Limitations and Conclusions
We introduced a novel solution to blend new objects into

an existing NeRF scene with natural looking and consistent

results by utilizing a language-image model to steer the gen-

eration process towards the edit and by introducing novel

priors, augmentations and volumetric blending techniques

for improving the final edited scene. We tested our method

on a variety of scenes and text prompts and showed the ap-

plicability of our framework on several editing applications.

We believe that our framework can be utilized in a variety

of applications due to the ease and intuitive interaction en-

abled by our interface.

One of the limitations of our framework is that currently

it can’t edit multiple objects in a given scene, such as chang-

ing two wheels of a 3D car without impacting the rest of the

scene. Additionally, the use of a box as our ROI scene shape

can be sometimes limiting; for example, when trying to edit

a circular scene like the blender ship scene in Figure 2, a

cylinder could be preferable. Due to the fact we are render-

ing one view in each training step, we may get artifacts like

multiple heads on the generated object. The quality of our

generated objects can be improved by utilizing the recent

progress in diffusion models, we leave it as a future work

to combine our suggested blending framework with these

models.
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