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Figure 1: Detailed comparison to other methods for π-GAN, MVCGAN and EG3D. The edited attributes are annotated.

We first provide additional quantitative and qualitative
results for our LatentSwap3D. Then, we show ablation stud-
ies on hyper-parameters, alternative edit techniques, and
feature ranking methods. Finally, we discuss limitations,
implementation details, and future work.

1. Additional Results

1.1. Additional Comparison to Other Methods

In addition to Fig. 7 in the main manuscript, we report
here an additional comparison among LatentSwap3D, In-
terFaceGAN [27] and StyleFlow [1]. As seen in Fig. 1,
our approach provides meaningful semantic edits without
changing the identity on the input image and performs best
for all desired attributes among 3D GANs, while the other
methods may change the identity or make entangled edits.

1.2. Additional Animal Editing

To further support our findings, we included additional
attribute editing examples for animals in addition to Fig. 5
in the main manuscript. Figure 2 shows the successful
edits of color and breed attributes on pre-trained π-GAN,
MVCGAN, and EG3D generators using our proposed La-
tentSwap3D.

In Fig. 3, we show additional qualitative results on ap-
plying edits to samples generated from a StyleGAN model
trained on AFHQ [4] - Dogs dataset. We use the attribute
classifiers presented in Sec. 4.3 to identify the dimension to
edit. Note that even if the classifiers are trained on cat im-
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Figure 2: Results for Cats dataset [35] with π-GAN and
AFHQ dataset [4] with MVCGAN and EG3D generators.

ages, they can successfully be used for attribute editing on
dog images.
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Figure 3: Results for AFHQ dataset [4], for dog images,
from LatentSwap3D on StyleGAN2.
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1.3. Additional Real Image Editing Results

We show additional real image editing results for MVC-
GAN. Thanks to the generator model’s high-resolution out-
put, our editing results are also in very high resolution. In
Fig. 4, we show results for face inversion and several at-
tribute editings, e.g., smiling, changing the hair color, and
wearing eyeglasses. In all cases, our edits correctly main-
tain the 3D consistency of the generated face.
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Figure 4: Additional inverted and edited examples from our
approach on MVCGAN.

1.4. LatentSwap3D on Other 3D-aware Generators

GIRAFFE consists of NeRF and 2D GANs. The NeRF
part outputs the features of the 3D shape and texture, while
the 2D GAN part outputs the final image [20]. In Fig. 5,
we show smiling and wearing eyeglasses edits from La-
tentSwap3D on the GIRAFFE - FFHQ model. To test how
well LatentSwap3D generalizes to different datasets, we ex-
tended the experiment to include CompCars [32] using the
pre-trained GIRAFFE generator. Furthermore, due to the
lack of classifiers for car attributes, as a proof of concept,
we trained a ResNet-50 to classify the color of a car from
scratch on Myauto.ge Cars Dataset [19]. As seen from
Fig. 6, our approach can successfully edit the color of the
cars using these classifiers.
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Figure 5: LatentSwap3D on GIRAFFE [20] - FFHQ

Figure 6: LatentSwap3D on GIRAFFE - CompCars [32].



π-GAN MVCGAN EG3D
CelebA Cats FFHQ AFHQ FFHQ AFHQ

Method FID KID FID KID FID KID FID KID FID KID FID KID
Unedited 50.7 0.045 57.4 0.055 54.1 0.048 47.1 0.041 47.5 0.039 39.5 0.037
LCLR. 53.4 0.051 60.1 0.062 55.6 0.052 51.2 0.047 59.6 0.049 40.1 0.031
SeFa 68.2 0.062 59.2 0.059 69.4 0.063 49.2 0.045 64.3 0.051 44.1 0.038

IGAN. 48.9 0.034 59.6 0.059 62.3 0.056 53.1 0.039 58.8 0.053 45.8 0.039
SFlow. 52.1 0.047 59.1 0.058 56.3 0.051 50.8 0.041 60.5 0.050 40.4 0.034
Ours 51.2 0.048 58.8 0.057 60.8 0.053 50.3 0.041 61.1 0.051 42.1 0.035

Table 1: Quantitative comparison of FID and KID among different image editing methods for π-GAN, MVCGAN, and
EG3D on attribute edits of face and animal images. The selected attributes are mentioned in Sec. 4.4.

VolumeGAN is a high-quality 3D-aware generative model
explicitly trained to learn a structural and a textural repre-
sentation, and it is based on NeRF [31]. The results of our
approach on VolumeGAN - FFHQ are provided in Fig. 7.
Our approach applies the desired attributes, e.g., removing
eyeglasses, changing the hair color, and reducing the facial
hair, to the latent space of VolumeGAN, without changing
the identity of the input face.
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Figure 7: LatentSwap3D on VolumeGAN [31] - FFHQ.

StyleNeRF is another high-resolution 3D-aware generative
model that integrates a NeRF into a 2D style-based gener-
ator [7]. StyleNeRF is able to generate high-resolution and
3D consistent images/shapes from unstructured 2D images.
Figure 8 shows our attribute editing, e.g., smiling, removing
bangs, and changing the hair color on StyleNeRF - FFHQ.
LatentSwap3D operates successfully on the latent space of
StyleNeRF by preserving the identity.
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Figure 8: LatentSwap3D on StyleNeRF [7] - FFHQ.



1.5. Additional Quantitative Analysis

We report Distribution-level Image Quality metrics in
addition to Identity Preservation and Semantic Correctness
metrics in the main manuscript. We calculate Frechet Incep-
tion Distance (FID) [10, 26] and Kernel Inception Distance
(KID) [2] between 10K edited images and the CelebA test
dataset for the face domain and AFHQ test dataset for the
animal domain. Although our method does not have the
best FID and KID metrics, it is on par with other methods.
Since these metrics do not indicate the methods’ editing ca-
pability [16], results in Tab. 1 should be considered together
with semantic correctness and identity preservation metrics
in the main manuscript Sec. 4.3, Tab. 2, and Tab. 3 which in-
stead measure the effectiveness of the edits. LatentSwap3D
outperforms competitors in those metrics while providing
competitive FID.

2. Ablation Studies
This section reports some ablation studies on a study on

hyper-parameters of LatentSwap3D, alternative latent space
edit methods: linear operations and direct optimization of
the desired attribute, a comparison of the use of random
forests vs. other ranking methods for latent dimensions
ranking, and camera pose optimization during inversion.

2.1. Hyper-Parameters

Selection of training set size. We conduct an ablation
study to assess the impact of training set size on a random
forest that identifies the relevant dimensions for the given
attribute. To this end, we generated additional samples
from pre-trained generators at no extra cost. More samples
will provide more diversity in the training set of the ran-
dom forests; as expected, increasing the size of the training
sets improves semantic correctness and identity preserva-
tion. However, doubling the training from 10K to 20K sam-
ples has diminishing returns (same Semantic Correctness),
as seen in Tab. 2. For the sake of efficiency, we picked 10K
for all our experiments.

Training Set Size Sem. Cor. ↑ Ident. Pres. ↑
5K samples 92% 73%
10K samples (default) 95% 71%
20K samples 95% 70%

Table 2: Semantic correctness and Identity preservation
metrics on various training set sizes on MVCGAN - FFHQ.

Selection of τ . The metrics for Semantic Correctness
and Identity Preservation with respect to different values of
τ are presented in Tab. 3. It is important to note that the
choice of τ significantly impacts the identity preservation
metric. Specifically, as τ increases, the identity preserva-
tion metric decreases. In contrast, the Semantic Correctness

metric exhibits diminishing returns after τ = 25%. There-
fore, we picked this value and kept it constant during our
experiments.

τ Sem. Cor. ↑ Ident. Pres. ↑
15% 78% 88%
25% 95% 71%
35% 96% 65%
45% 97% 58%
55% 97% 44%
65% 97% 31%

Table 3: Semantic correctness and Identity preservation
metrics on different values of τ on MVCGAN - FFHQ.

Selection of support set size. We also report the seman-
tic correctness and identity preservation metrics for differ-
ent support set sizes for finding the reference image. As
shown in Tab. 4, decreasing the support set size leads to
improved semantic correctness since the reference image
has more representative features based on the desired at-
tribute. Conversely, increasing the support set size improves
the identity loss metric. Based on the results, the optimal
support set size identified is 32, which we used during all
our experiments.

Support Set Size Sem. Cor. ↑ Ident. Pres. ↑
1 95% 70%
16 95% 70%
32 95% 71%
128 94% 72%
1024 93% 72%

Table 4: Semantic correctness and Identity preservation
metrics on different support set sizes on MVCGAN - FFHQ.

2.2. Alternative Edit Techniques

Linear operations. StyleGAN-based generators use
AdaIN [11] layers to guide the image generation process.
AdaIN layers apply a linear transformation to the input
features; therefore, they are suitable to be modified with
simple linear transformations in the latent space. For
example, recently [30] showed that such linear operations
are enough to provide disentangled and fine-grained manip-
ulations in the latent space of StyleGAN2 [14]. While some
3D GANs employ a style space where linear operations
can be applied, such as EG3D, others do not, and one of
the objectives of this work was to be able to develop a
method that is completely generator agnostic. For example,
π-GAN and StyleSDF use SIREN [29] layers that enforce
periodicity due to the presence of sin-based activation



functions in the learned latent space. Intuitively linear edits
of latent codes (such as additions or subtractions) will not
perform nicely in a periodic latent space, therefore motivat-
ing the need to resort to the feature swapping mechanism
of LatentSwap3D. To verify this intuition, we conducted
an ad-hoc experiment performing linear operations, such
as addition and subtraction, on the latent spaces of π-GAN
and StyleSDF. We reported the results in Fig. 9. Linear
edits in this context are defined as constant changes on the
top 256 features ranked from our trained Random Forests.
To increase or decrease the corresponding latent codes, we
look at the sign of the difference between the latent codes
of the image that will be edited and the reference images
that have the desired attribute. Linear operations on π-GAN
can result in images with some artefacts (e.g., π-GAN -
smiling) or lower intensity edits (e.g., π-GAN - black hair).
For StyleSDF, linear operations can apply the desired edit
and generate realistic images but have an undesired side
effect on the identity. The StyleSDF - female edit changes
the background and clothing, while the StyleSDF - age edit
also changes the hairstyle. For both generators and all four
attributes, LatentSwap3D can perform disentangled edits
free of artifacts and preserving identity.
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Figure 9: Effect of linear manipulations (LM) on the latent
space of the 3D GANs, π-GAN and StyleSDF.

Direct optimization. Since we have differentiable image
classifiers for the attribute we would like to edit, an alterna-
tive to LatentSwap3D would be to directly optimize latent
codes to maximize the presence of the desired attribute as
measured by the respective classifiers. To compare against
this alternative, we first trained binary image classifiers
based on ResNet-50 [9] on the CelebA [17] dataset for each
attribute. Then, we take the latent codes of the original im-
age as the initial point and try to learn an offset in the la-
tent space that, when summed to the initial latent code, ap-
plies the desired transformation. To optimize the offset, we
feed the generator the original latent code modified by the
offset, generate an edited image, and provide it to the at-
tribute classifier. At this point, we can compute as a loss

function the cross-entropy loss between the output of the
classifier and the class of the desired attribute and mini-
mize it to optimize the offset using back-propagation di-
rectly. For the optimization procedure, we perform 400 it-
erations with Adam [15]. As shown in Fig. 10, this method
struggles to preserve the identity of the edited image (see
all lines). Moreover, it learns edits that are not realistic
but are classifier-biased, such as the smiling (+) attribute
that brightens the teeth. In contrast, the smiling (-) attribute
changes the color of the teeth to the skin color; see light-
green arrows in Fig. 10.
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Figure 10: Directly optimize the latent codes using pre-
trained image classifiers and back-propagation.

2.3. Other Feature Ranking Methods

In LatentSwap3D, we use Random Forests [3] based fea-
ture ranking; in this section, we experimentally motivate
this choice by considering other methods for feature rank-
ing. We consider three alternatives: (i) the SelectKBest [23]
method from the popular SciKit-Learn library that sorts the
feature based on a score function, such as χ2 [22], and
selects the k features with the highest scores, (ii) Support
Vector Machine (SVM) [5] based method that takes the ab-
solute values of the feature coefficients of a trained linear
SVM, and (iii) SHapley Additive exPlanations (SHAP) [18]
based method that explains the output of trained machine
learning models by calculating the importance of the fea-
tures. As can be seen in Fig. 11, SHAP- and RF-based
methods show similar performance on the attributes female
(-), smiling (+). However, for blondness (+) and makeup
(+) attribute edits, the random forest-based ranking pro-
vides higher quality. On the other hand, SVM-based rank-
ing has comparable results for smiling (+) and makeup (+),
but for the other attributes fails to generate the correspond-
ing edits. Finally, the SelectKBest method performs simi-
larly to the SVM-based ranking method, but it has a small
effect on the blondness attribute.
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Figure 11: Comparison of various feature ranking methods
on the latent space of π-GAN.

2.4. Off-the-shelf Inversion Method

Though the central objective of this paper does not re-
volve around proposing an inversion technique, we illus-
trate a use-case scenario using our proposed method for real
image editing in the main paper. Figure 12 shows the com-
bination of our work with a SoTA inversion method [33] for
EG3D. Our method remains valid and applicable, combined
with arbitrary GAN inversion methods (including the most
recent ones).

Input Inversion (14%) Smiling (+) (20%)

Figure 12: Percentage (%) denotes the identity change from
the input image.

2.5. Consecutive and Complex Edits

We provide consecutive edits in Fig. 13. LatentSwap3D
operates multiple edits, such as blue eyes, smiling, blonde,
gender, and age.

2.6. Details on Camera Pose Optimization

Using off-the-shelf face pose estimation can be an al-
ternative to the proposed method for the specific case of
faces. However, it will hinder the generalizability of the in-
version procedure to only those datasets or object categories
for which a pose estimator can be trained. Our alternating
optimization schema, instead, only relies on the assump-
tion of having a trained generator and, as such, we believe,
provides a more general solution. To show the impact of
optimizing the pose on the inversion process, we report a
comparison in Fig. 14.

Input (1) Blue Eyes (7%) (2) Smiling (15%)

(3) Blonde (17%) (4) Gender (28%) (5) Age (+) (22%)

Figure 13: We report five sequential edits, where % denotes
the identity change between consecutive edits.
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Figure 14: Importance of Camera Optimization in Inversion
Procedure. Off-the-shelf pose estimator [6].

3. Limitations

Under-represented Attributes on Training Datasets of
GANs. During the development of this work, we identi-
fied some attribute manipulations that cannot be applied in
the latent space of pre-trained 3D-aware image generators.
These usually cover under-represented classes in the origi-
nal training set, such as faces with a hat or earrings. We hy-
pothesize that these samples fall out of distribution for the
generator, so they do not have specific dimensions in the la-
tent space allocated to them. For this reason, reproducing
them with our editing technique is difficult. We show some
failed edits in Fig. 15.
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Figure 15: Failure edits on the latent space of π-GAN for
classes under-represented in the training set.



Real Images Inverting Capabilities of GANs. We
showed promising initial results on editing real images via
GAN inversion followed by LatentSwap3D. During the de-
velopment of this work, we found that the inversion of an
image in the latent space of 3D generators is quite challeng-
ing and sometimes fails to generate high-quality outputs or
maintain the identity of the inverted face. This is particu-
larly true for StyleSDF, where the inverted faces resemble
the original but not perfectly. We show one example inver-
sion in Fig. 16. However, this limitation is naturally solved
using newer and more powerful generators with better in-
version capabilities, e.g., MVCGAN. As shown in the main
manuscript, our model can produce consistent attribute edit-
ing on real images with a powerful generator.

Input Different Views

Figure 16: Inversion on the latent space of StyleSDF. While
the global appearance matches, the identity is not preserved.

4. Implementation Details

4.1. Datasets

We test our proposed model, LatentSwap3D, with 3D-
aware generative models on images from six different
datasets: CelebA (256x256) [17], FFHQ (1024x1024) [13],
Cats (256x256) [35], AFHQ (512x512) [4], and Comp-
Cars [32] (256x256) method to the 2D GAN model Style-
GAN2 on FFHQ (1024x1024) [13], AFHQ (512x512) [4],
and MetFaces (1024x1024) [12].
CelebA [17] is a large-scale dataset of ∼200K face images
of over 10K different celebrities and 40 annotated attributes
for each image. Its resolution is (256x256). π-GAN and
MVCGAN provide pre-trained weights for CelebA.
FFHQ dataset consists of over 70K high-
resolution (1024x1024) and high-fidelity images of
human faces [13]. The dataset has diverse samples regard-
ing age, ethnicity, and wearing accessories. It is used in this
work to generate images from StyleNeRF, VolumeGAN,
GIRAFFE, StyleSDF, MVCGAN, and EG3D.
Cats contains 6K images (128x128) of cat heads [35]. The
dataset is used to generate cat images from π-GAN.
AFHQ is a dataset that contains over 15K high-
resolution (512x512) and high-quality images of animal
faces [4]. The dataset has three domains: dogs, cats, and
wildlife animals, and each domain has 5K samples.
MetFaces consists of over 1K human faces (1024x1024)
extracted from works of art. The images are automatically
aligned and cropped [12]. This dataset is used only when
evaluating LatentSwap3D on StyleGAN2.

CompCars contains ∼137K images of 1716 unique car
models [32]. Its resolution is 256x256. This dataset is used
only when evaluating LatentSwap3D on GIRAFFE.

4.2. Runtime Analysis

LatentSwap3D consists of two main steps, as shown in
the main manuscript Fig. 2a and 2b. We measure the run-
time on an NVIDIA Tesla T4 GPU Machine with 12-cores.

Identifying Editing Image
Method Step Step Inversion
π-GAN 180 min. 600 ms/im. 20 min./im.
MVCGAN 68 min. 600 ms/im. 8 min./im.
EG3D 72 min. 600 ms/im. 8 min./im.

Table 5: Overall runtime analysis of the proposed method.
The values for the first column are calculated using a dataset
of 10K generated images.

Identifying Relevant Latent Dimensions. For the step
in the main manuscript Sec. 3.3, there are three main pro-
cesses: (i) generating the training set from random sampling
in the latent space of the generator, (ii) predicting the prob-
abilities of the presence of the desired attribute in the gen-
erated images using pre-trained image classifiers, and (iii)
training a random forest to predict the presence of the de-
sired attribute from the latent codes. Considering π-GAN as
a generator, the image generation step takes 2 hours for 10K
images, while for MVCGAN and EG3D, it takes 8 and 12
minutes, respectively. Labeling the 10K images using the
pre-trained image classifiers takes 45 seconds per attribute.
Finally, the training process of the random forests takes 1
minute per attribute.

Attribute Editing on Latent Dimensions. The second
step is described in the main manuscript, Sec. 3.4, which
takes around 600 milliseconds per image for all generators.

3D Edits on Real Images. The runtime analysis for each
generator’s inversion of real images is shown in Tab. 5. The
inversion procedure can be sped up using encoder-based in-
version approaches. However, we leave it to future devel-
opment.

4.3. Details of Animal Attribute Classifiers

We trained ResNet-50 [9] classifiers to predict Siamese
breed and brown color by using the dataset [24]. Since we
do not have frontal and zoom-in views of the animals, we
apply a haar detector1 for cat faces for the dataset. Our

1https://github.com/kipr/opencv/blob/master/
data/haarcascades/haarcascade_frontalface_
default.xml



model can successfully edit AFHQ and Cats datasets by
leveraging these attribute classifiers.

4.4. Details on the Quantitative Analysis

For Distribution-level Image Quality and Identity preser-
vation metrics, we use 2000 generated images per attribute
from five different attributes, 10K in total per method. For
LatentSwap3D, InterFaceGAN [27], and StyleFlow [1], we
select the attributes for the three generators as follows: for
π-GAN we tested gender, smile, age, hair color, and heavy
makeup, while for MVCGAN and EG3D, we picked gen-
der, smile, age, glasses, and adding beard. SeFa [28] and
LatentCLR [34] are unsupervised edits discovery methods.
Therefore we cannot isolate specific attribute editing trans-
formations. So instead, we take the top five semantics for
SeFa and five directional models for LatentCLR.

4.5. Details on the Comparison to Other Methods.

Since the other 3D editing methods apply to specific ar-
chitectures or have their own generator part, we pick 2D
attribute manipulators that have been proven to work well
on 2D generators as baselines. They can also be applied to
latent spaces of 3D GANs. InterFaceGAN [27] and Style-
Flow [1] are the closest competitors to our method and were
originally proposed for image generators. Similarly to La-
tentSwap3D, InterFaceGAN leverages pre-trained attribute
classifiers to find the corresponding linear edit directions in
the latent space of trained generators. However, as men-
tioned, linear edits are sub-optimal in the periodic space de-
termined by the SIREN [29] activation functions used in π-
GAN, MVCGAN, and others. On the other hand, StyleFlow
uses the attribute information during the training of normal-
izing flows as conditions. When editing the desired attribute
on a face sample, the user can give the desired attribute as
a condition. In our comparison, we also consider methods
for unsupervised discovery of editing directions: SeFa [28]
and LatentCLR [34]. Both methods do not have assump-
tions about the characteristic of the generator to which they
are applied. Therefore, they can be easily adapted to NeRF-
based generators like π-GAN or MVCGAN.

5. Future Work

Real Images Inverting Capabilities of GANs. While a
better 3D-aware GAN inversion was outside the scope of
this work, we believe that in the future, some of the pro-
posed techniques for style-based 2D generators like [25]
could be adapted for the new category of 3D-aware genera-
tors and combined with LatentSwap3D to enable even more
powerful edits on real images. For instance, if encoder-
based inversion [25] is adapted, it will speed up the inver-
sion process.

Improvement on Disentanglement. As an exciting di-
rection to overcome the limitation of the improvement of
disentanglement, we plan to explore a way of constrain-
ing the latent space of NeRF-based GAN models to exhibit
such disentanglement properties. Similar paths have been
recently proposed for style-based generators [8].

Finding Semantic Edits by Unsupervised or Self-
supervised Manner. This study is one of the pioneers for
conducting semantic edits in 3D-aware generative models.
Therefore, future studies can adapt the 2D unsupervised and
self-supervised image manipulators like [21,28,34], to pro-
vide unsupervised methods for finding semantic edits.
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[34] Oğuz Kaan Yüksel, Enis Simsar, Ezgi Gülperi Er, and Pinar
Yanardag. Latentclr: A contrastive learning approach for
unsupervised discovery of interpretable directions. In ICCV,
2021.

[35] Weiwei Zhang, Jian Sun, and Xiaoou Tang. Cat head detec-
tion - how to effectively exploit shape and texture features.
In ECCV, 2008.


