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Abstract

In order to respond effectively in the aftermath of a dis-
aster, emergency services and relief organizations rely on
timely and accurate information about the affected areas.
Remote sensing has the potential to significantly reduce the
time and effort required to collect such information by en-
abling a rapid survey of large areas. To achieve this, the
main challenge is the automatic extraction of relevant in-
formation from remotely sensed data. In this work, we show
how the combination of drone-based data with deep learn-
ing methods enables automated and large-scale situation
assessment. In addition, we demonstrate the integration of
onboard image processing techniques for the deployment of
autonomous drone-based aid delivery. The results show the
feasibility of a rapid and large-scale image analysis in the
field, and that onboard image processing can increase the
safety of drone-based aid deliveries.

1. Introduction

Every year, millions of people around the world are af-
fected by natural and man-made disasters [5]. In order to
respond effectively to such crises, emergency services and
relief organizations rely on timely, comprehensive, and ac-
curate information about the disaster’s extent. For years,
emergency mapping has been based on remote sensing data
to support rescue operations, gathering information on af-
fected areas by comparing images acquired before and after
the event by satellites, aircrafts, or drones [9]. However,
the automatic extraction of such information and its rapid,
scalable, and reliable delivery is still a challenge. Recent
developments in computer vision and the rapid evolution
of graphics processing units have led to optimized, fast-
running algorithms, opening up new possibilities in disaster
and humanitarian relief [2].
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Figure 1: Illustration of the presented workflow.
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In this paper, we explore the potential of state-of-the-art
deep learning techniques for image analysis in combination
with remote sensing data acquired by drones. The work-
flow, ranging from real-time and large-scale image acqui-
sition and mapping, to automatic and fast image analysis,
over to an onboard image processing method to support au-
tomatic aid delivery by drones is presented in Figure 1. The
extracted information can be seamlessly integrated into an
organization’s operations control center to effectively sup-
port emergency services and aid organizations in their op-
erations. The methodological focus is on: (1) automated,
near real-time extraction of roads, buildings and people for
initial impact assessment to help prepare missions in terms
of logistics and routing of relief forces and supplies, and (2)
real-time detection of people from drones to increase the
safety of drone-based aid delivery once target areas have
been identified. Here we use the term “near real-time” to
refer to processing within hours, and “real-time” to refer to
processing within seconds. The performance of all meth-
ods has been thoroughly tested and evaluated, demonstrat-
ing their potential to rapidly analyze large amounts of data
and increase the safety of drone-based aid deliveries.

Ethically, there is no recognition of individuals and no
sensitive data stored in a cloud where privacy could be
compromised. Our work has been carried out in close col-
laboration with organizations such as the World Food Pro-
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gramme (WFP), .S.A.R. Germany, and the Bavarian Red
Cross (BRK), who recognize the high potential of our meth-
ods and the urgent need to put them into practice.

2. Situation Assessment

In order to support relief efforts in rapidly assessing the
impact of a disaster, we present an approach consisting of
two-steps: 1) mapping the scene in real time with a camera
system mounted on a drone in order to provide up-to-date
image data over the area of interest, and 2) automatically
extracting relevant information in the field and in near-real
time to help humanitarian organizations assess the acquired
data faster. For the mapping of the disaster area, the rapid
mapping camera system MACS-Micro [6] is used, which
is carried and integrated into a fast-flying drone. The im-
age data are available on the ground in real time using a
commercial radio link. If the range of the radio link is ex-
ceeded, the data will be available immediately after landing.
The system consists of nadir-pointing cameras, a GNSS re-
ceiver combined with an industrial-grade inertial measure-
ment unit, an embedded computing unit, and a radio link.
During a typical campaign, the camera is operated at an al-
titude of 200m above ground, with a speed of 80km/h, and a
frame rate of 2Hz. This gives an acquisition rate of around
3200m? per second with a GSD of 3cm. The resulting prod-
uct is a scaled image mosaic showing the current situation
of the disaster area, which can be used as an additional map
layer for common geographic information systems.

According to feedback from relief organizations in-
volved, a number of important questions arise in the first
moments after a disaster, such as: which areas are most af-
fected? How many people have been affected and where are
they now? Which infrastructure can still be used for rescue
and relief? Based on these questions, we identified the ob-
jects “roads, “buildings” and “people” as the most important
in helping emergency responders to give timely answers to
these questions. To this end, we developed three algorithms
running on a GPU laptop in the field.

Road segmentation: We use a Dense-U-Net-121 [7]
based on the widely-used U-Net [13]. For the backbone
of both the encoder and decoder, we use a DenseNet-121
as it offers the best compromise between the accuracy of
the result and the computational resources required. The
resulting road mask provides rescue teams with an up-to-
date map of the captured area and can be used to identify
cut-off regions. In addition, changes to the road network
and severely affected areas can be quickly identified when
compared to a pre-disaster scene.

Building segmentation: For the segmenting of build-
ings, the HRNet [16] consisting of four parallel, multi-
resolution streams that maintain fine-grained features
throughout the network is used. This feature allows for
more precise localization, which is crucial for the task of

Figure 2: Vertical take-off and landing drone (left) with in-
tegrated camera system MACS-Micro (right).

building segmentation. The resulting building mask can be
used to identify populated areas and, if compared to a pre-
disaster scene, to estimate the number of people affected
and damaged houses.

Person detection: For the detection of people, we use
an adapted YOLOV3 [12] object detection method that
addresses challenges such as variations in scenes, poses,
scales, and viewing angles posed by images during real hu-
manitarian missions. As no publicly available person de-
tection dataset was suitable for our case, we created a new
dataset consisting of aerial and drone images covering dif-
ferent scenarios and countries (for more details see [1]).
The output of the model is the location of each detected
person in the form of bounding boxes, which is extremely
valuable information for search and rescue missions or for
the safe delivery of supplies to affected areas.

After the inference phase, the models’ predictions are
assigned the same geo-referenced coordinate space as the
input image. The output layers are saved as a GeoTIFF file
and overlaid on the geo-referenced input image for further
analysis in any software supporting this format. The ac-
quired image data as well as the derived information layers
can either be shared directly with interested humanitarian
organizations or delivered to institutions such as the Center
for Satellite Based Crisis Information ZKI [19], where earth
observation data are analyzed and situational awareness is
generated before, during and after a natural or man-made
disaster in form of ISO standardized products.

3. Delivery of relief supplies

After assessing the impact of a disaster, the next phase is
to response. We focus on a specific case where we assume
that people are cut off and can only be reached by air. Relief
supplies are delivered by a drone dropping a payload. To in-
crease the safety of people on the ground during the process,
we investigated how a camera system can be combined with
an Al algorithm to detect people onboard the drone. Gen-
erally, various drone configurations could be envisioned to
deliver goods in humanitarian aid scenarios. In this work,
we focused on a superARTIS demonstrator platform which
is equipped with a box drop mechanism as depicted in Fig-
ure 3. This box-dropping payload was integrated and flight
tested in cooperation with Wings For Aid [3]. For assess-
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Figure 3: Unmanned helicopter superARTIS equipped with
payload for aerial delivery.

ing the safety of the drop zone, the drone is also equipped
with a downward looking camera and an onboard process-
ing unit. The capability of running Al-based people detec-
tion onboard in real time may serve different purposes de-
pending on the automation desired for the operation and the
availability of a data link. In case the aircraft is remotely
piloted via a low bandwidth data link, the processing re-
sults can still be transmitted with a low bandwidth demand
as opposed to transmitting the video stream. This enables
the remote pilot to assess whether or not it is safe to release
the box of supplies. Also, no personal data is transmitted
or recorded in this scenario. When no data link is available,
the onboard autopilot may use the onboard person detection
to conduct the delivery autonomously in a safe manner.

In order to enable real-time person detection on drones,
we optimize the processing of the YOLOv3 discussed in
section 2. We reduce the data type precision to float16 and
simplify the non-maximum suppression procedure which is
one of the most computationally intensive steps. The im-
ages acquired by the camera system are transferred to and
processed by the onboard GPU. The detection results are
then passed to the CPU and geolocated. We use the cross-
platform data format Protocol Buffers [15] to ensure effi-
cient data transfer rates and communication within the sys-
tem in order to minimize the overall processing time.

4. Experiments

Training parameters: For road segmentation, a Dense-
U-Net-121 was trained on the DeepGlobe 18 [4] dataset con-
sisting of 1,632km? annotated images data at 50cm/px from
southeast Asian regions. We trained it for 40 epochs with a
patch size of 512 x 512px and a batch size of 12. For build-
ing segmentation, we used the Inria dataset [11] to train
the HRNet. This dataset contains 405 km? of labeled image
data at 20cm/px from the USA and Austria. The training
was performed for 20 epochs with a patch size of 512 x 512
and a batch size of 16. For training the person detection
network, we used our own training dataset [1] consisting
of 10,050 annotated persons in 311 aerial and drone im-
ages (train: 259, validation: 25, test: 27), with GSDs rang-
ing from 0.2 to 6cm/pixel, covering areas in Germany, the
Netherlands, Switzerland, Spain, France, and Nepal.

Figure 4: View from the delivery drone and demonstration
of the onboard person detection algorithm.

Test hardware: To use our models in humanitarian con-
texts, they must run on portable and affordable computers.
Therefore, we chose an Alienware Area51m laptop with
32GB of RAM and an NVIDIA RTX 2080 Super with 8GB
of VRAM to process the image patches. The processing
time of the three models is summarized in Table 1. For
the onboard processing, we used a Jetson AGX Xavier with
8GB of VRAM. Here we tiled each image into patches of
416x416px with 10% overlap to fit into the GPU memory.

Results & Discussion: When applying research methods
to real-life applications, the overall framework and all its
requirements must be carefully considered and taken into
account during the development and implementation of al-
gorithms. For our specific application case, some of the
constraints are due to technical, computational, legal, and
financial limitations, while others are due to the overall sit-
uation during a disaster. But also the algorithms used come
with limitations. For our models to generalize well to new
locations, the images must be as similar as possible to those
of our training set. Ideally, they should be taken at nadir, i.e.
not be side-looking, in clear weather, and with sufficient il-
lumination. The resolution of the images acquired after the
disaster might be higher than during training, in which case
the images are downsampled if necessary.

For the road segmentation task, we selected 20 test
scenes to evaluate the generalization capability of our
model, each annotated by hand with vector lines: 1 from
Epeisses, Switzerland in a disaster training area (0.2km?),
10 from the Ahr Valley, Germany after the major flooding
event in 2021 (10.5km?), and 9 from Beira, Mozambique
after the Cyclone Idai in 2019 (3.5km?). While our model
was already shown to perform well in many regions around
the world [7], e.g. in Nepal (see appendix), it also achieved
excellent results in the chosen test scenes as in Figure 5.
Most roads were successfully detected with a completeness
of 71%, and few false positives with a correctness of 76%
(metrics from [17], cf. Table 1). The predicted roads are
regular and continuous despite changes in color and mate-
rial. Some sections were incorrectly detected for three rea-
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Figure 5: Qualitative results: image mosaic, segmented roads, segmented buildings, and detected people (left to right).

Table 1: Processing speed (per megapixel and per area) and quantitative results obtained on an Alienware Area51m laptop.

Task Training GSD Computational time Complet. Correct. Quality Prec. Recall IoU AP
data [em] per MP  per km> [%] [%] [%] [%] [%] [%]  [%]
Road DeepGlobel8 [4] 50 0.80s 3.30s 70.96 76.48 58.08 - - - -
Building Inria [11] 20 0.38s 9.50s - - - 83.74 77770  68.12 -
People Ours [ 1] 3 0.44s 19min - - - 54.13  65.87 - 60.36

sons: 1) the model was trained to detect roads, but not larger
asphalted areas such as parking areas or certain dead ends,
2) after disasters, sand, mud, and debris may be present on
the road, which our training dataset does not feature, and 3)
drone image mosaics may contain irregular regions of back-
ground along their borders, which removes the necessary
context to correctly identify short sections of roads. Despite
these obstacles, our model achieved 58% quality.

For the building segmentation task, we used the same
11 scenes as for the road segmentation from Epeisses and
the Ahr Valley, and 3 separate scenes from Beira (2.8km?)
for evaluation with manually annotated ground truth. The
average precision, recall, and intersection over union (IoU)
scores are reported in Table 1). In contrast to the Ahr Vally
scene, the numbers for Epeisses and Beira are much lower.
There are three main reasons why: 1) the data has a much
higher resolution than the training data and therefore has
different spectral and textural features, 2) in Beira, a large
number of buildings are very small, which is not reflected
in the training data, and 3) in Epeisses, the scene includes
large tents that are mistakenly segmented as buildings.

For the people detection task, we evaluate the trained
model on a test set of 27 images with 410 annotations. One
of the challenges we faced was the altitude required for the
delivery drone. In order to safely drop the supplies, the
flight altitude must be around 80m, resulting in images with
a ground sampling distance of 1-3cm. Therefore, the train-
ing set for the person detection algorithm had to be adjusted
to include more images in this GSD range. In addition, im-

ages with a GSD of less than 6cm had to be removed from
the training set, as the visual appearance of people varies too
much between 1-10cm. Overall, we achieved a precision,
recall, and average precision (AP) of around 54%, 66%,
and 60%, respectively (see Table 1). Images with a lower
GSD generally give better predictions, although the model
struggles with complex backgrounds such as vegetation or
disaster ruins, and is affected by changes in camera angle.
Increasing the variety of the training data could help to over-
come these limitations. Testing the optimized model on the
Jetson board achieved a 2s processing time for each 16MP
image without compromising accuracy and recall. Figure 4
shows a sample result with a GSD of 3cm/pixel.

5. Conclusion & Future Work

Our results show that the combination of computer vi-
sion and remote sensing technologies has great potential to
significantly improve disaster management and humanitar-
ian aid. Fast and large-scale image analysis becomes feasi-
ble, and onboard image processing can increase the safety
of drone-based aid deliveries. However, to improve their
generalization and performance, these methods need to be
trained on larger datasets from around the world, tested in
the field, and extended to include other relevant features
such as road or building damage. End-user feedback and
knowledge will play an important role in the future devel-
opment and improvement of the technologies. On the other
hand, limitations in the algorithms should be overcome to
make the models more robust to changes in the images (e.g.
viewing angle) and trainable with less labeled data.
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