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Abstract

Wildfires are increasingly exacerbated as a result of cli-
mate change, necessitating advanced proactive measures
for effective mitigation. It is important to forecast wildfires
weeks and months in advance to plan forest fuel manage-
ment, resource procurement and allocation. To achieve such
accurate long-term forecasts at a global scale, it is crucial to
employ models that account for the Earth system’s inherent
spatio-temporal interactions, such as memory effects and
teleconnections. We propose a teleconnection-driven vision
transformer (TeleViT), capable of treating the Earth as one
interconnected system, integrating fine-grained local-scale
inputs with global-scale inputs, such as climate indices and
coarse-grained global variables. Through comprehensive
experimentation, we demonstrate the superiority of TeleViT
in accurately predicting global burned area patterns for var-
ious forecasting windows, up to four months in advance. The
gain is especially pronounced in larger forecasting windows,
demonstrating the improved ability of deep learning models
that exploit teleconnections to capture Earth system dynam-
ics. Code available at github.com/Orion-Ai-Lab/TeleViT.

1. Introduction
Global warming increases the frequency and intensity

of fire weather, amplifying the likelihood of the conditions

that lead to extreme wildfire events [10]. In that context,

it is important to improve our understanding of wildfires,

anticipating wildfire patterns weeks and months in advance.

Operationally, subseasonal to seasonal wildfire forecasts are

typically treated as anticipated anomalies in temperature

and precipitation, derived from process-based climate mod-

els [20], while disregarding crucial fire-related factors like

soil moisture and vegetation dynamics. Deep Learning (DL)

methods, able to learn from data, offer a promising avenue to

model Earth system processes such as wildfires [17], arising

from the dynamic interactions of all the different fire drivers,

namely climate, vegetation and human activity [8].

Previous work In fact, several studies have successfully

applied DL to wildfire forecasting tasks [7,9]. When it comes

to global predictions on subseasonal to seasonal scales, ex-

isting work relies on traditional Machine Learning (ML)

approaches [16] that do not effectively capture Earth sys-

tem dynamics that are important for long-term forecasting,

even if sometimes they use teleconnection indices as input

features [14, 21]. In this work, we argue that for predictions

on long temporal scales, it is crucial to train models that

consider the Earth as one interconnected system, accounting

for spatio-temporal interactions such as memory effects and

teleconnections. There is substantial evidence that telecon-

nections modulate global wildfires [2,5,11,12]. For example,

extreme wildfires in Siberia have been linked to preceding

arctic oscillation [12] and previous-year soil moisture anoma-

lies [5]. Despite the evidence, there is very limited ML work

to predict wildfires that combines local information from the

fire drivers with Earth system variables. Chen et al. [3] use

simple autoregressive statistical methods to combine volume

pressure deficit values with oceanic indicators. Yu et al. [21]

use a statistical pre-processing to identify the most promi-

nent oceanic indicators modulating burned area in Africa

and then use the findings to select input features for tree-

based machine learning models. AttentionFire [14] uses an

attention-enhanced recurrent neural network architecture that

considers temporal context and shows slight improvements

at longer horizons when adding information from oceanic

indices. More sophisticated models that handle the Earth as

a system are arising naturally for weather and climate pre-

diction. Earthformer [6] combines spatio-temporal attention

with learnable global vectors that are meant to summarize

the dynamics of a system. GraphCast [13] uses graph neural
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networks that capture long-range interactions by defining

graphs at several resolutions. Climax [15] is proposed as a

transformer-based foundational model for weather and cli-

mate at coarse resolutions, working with global input or on

a very large spatial domain.

Application context Our study has direct implications

for humanitarian assistance and disaster response (HADR)

operations, particularly in addressing the challenges of inten-

sified wildfires due to climate change. Forecasting wildfires

weeks or months in advance can inform the deployment of

HADR-related anticipatory actions. This includes measures

for vegetation and forest management (e.g. controlled burns

and targeted firebreaks), coordination with local authorities

to form evacuation plans, procurement of resources such as

leasing firefighting equipment, and timely mobilisation of

international and cross-border cooperation and aid.

Our transformer-based models combine local and non-

local inputs like teleconnection indices and coarsened global

variables, and thus offer a novel approach to model Earth sys-

tem processes and improve our capabilities to forecast wild-

fires at subseasonal to seasonal scales. Outside of wildfire

forecasting, these methods hold promise for diverse HADR

applications, enabling foresight across extended timeframes,

which can empower proactive planning and optimized re-

source allocation before disastrous events.

Contributions In this work, we propose to explicitly

model short (local) and long (global) range interactions

of the Earth system for long-term global wildfire pattern

forecasting. For this, we develop a Teleconnection-driven

Vision Transformer (TeleViT), that expands ViT [4] with an

asymmetric tokenisation procedure in order to seamlessly

combine local and global scale inputs, i.e. climate indices

and coarsened global variables. We thoroughly examine the

performance of the proposed model, demonstrating superior

performance in various forecasting windows compared to

models that do not leverage teleconnections.

2. Teleconnection Vision Transformer (TeleViT)
To produce reliable long-range forecasts (weeks or even

months in advance), it is imperative to treat the Earth as

a connected system. The Earth system is characterised by

continuous interactions of processes that spread over large

spatio-temporal windows, manifesting as memory effects

and teleconnections. Memory effects are the realisation of

the persistence or influence of past events on current and fu-

ture states. They represent the temporal aspect of system be-

haviour, where the history of a system influences its present

or future behaviour. In the context of wildfire prediction,

memory effects capture how past events such as fuel accumu-

lation, drought conditions, and weather patterns can impact

the likelihood, behaviour, and extent of wildfires. Teleconnec-
tions constitute long-distance interactions between different

regions in the Earth system. They describe how changes in

one region can influence atmospheric or oceanic conditions

in another, often through large-scale atmospheric circulation

patterns or oceanic phenomena [19]. Teleconnections are of-

ten described in terms of teleconnection indices, i.e. Oceanic

and Climatic Indices (OCIs), calculated as large-scale anoma-

lies of specific parameters, such as temperature, pressure or

sea surface temperature. By teleconnections, however, we

refer to the long-range spatio-temporal interactions and not

to the indices per se, which we consider a mere proxy to the

state of the Earth system.

Figure 1. Full pipeline of the TeleViT architecture. The different

multi-scale inputs i.e. local, global and teleconnection indices, are

tokenized at different resolutions and fed to a Transformer encoder

along with a prepended classification token. The linear decoder is

based on the output of the classification token.

We propose to capture such distant interactions that are

omnipresent in the Earth system, using data that can inform

on the state and dynamics of the system. Particularly, we pro-

pose to enhance fine-resolution local data, i.e. information

for a small area on Earth, that are commonly used in isola-

tion, with information from i) OCIs and ii) coarse-resolution

global data. Effectively combining these inputs is particularly

challenging due to high dimensionality and the discrepancy

between the spatial resolution of the different data sources.

In that direction, we propose to utilise the versatility of

the Transformer architecture [18]. We build upon the Vi-

sion Transformer (ViT) [4], which adapts the architecture

to computer vision problems by splitting an image into non-

overlapping chips (tokens). The resulting token sequence

serves as input to a standard Transformer. Extending ViT,

we introduce the Teleconnection-driven Vision Transformer
(TeleViT). TeleViT relies on an asymmetric tokenization

method which increments the sequence of input tokens with

tokens stemming from different data sources, with poten-

tially varying spatial and temporal resolutions. To produce

the token sequence, each input source is tokenised inde-
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pendently, taking into account its inherent characteristics

along with the scale it operates on the Earth system. Local

information and time series of climatic indices should be

represented in high detail with smaller token sizes, while

global information, operating at a greater scale, can be less

detailed benefitting from larger token sizes.

TeleViT can be adapted to consume any type of input,

given a tokenisation strategy. For our setting, we assume lo-

cal input xl ∈ RCl×Hl×Wl , global input xg ∈ RCg×Hg×Wg

and indices input xi ∈ RCi×T , with C the number of fea-

tures, H the height, W the width and T the time-series length.

According to our asymmetric tokenisation, each of the in-

puts is split into tokens individually, resulting in Nl, Ng

and Ni tokens with dimensions Pl, Pg and Pi that depend

on the selected tokenisation strategy. Tokens are mapped

to the embedding dimension D of the Transformer with

a different trainable linear projection function for each in-

put fk : RNk×Pk → RNk×D, k ∈ l, g, i. Similar to ViT,

we add learnable positional encoding to the sequence of

Nl + Ng + Ni number of tokens, which is fed to a stan-

dard Transformer with depth K and A attention heads for

each layer. Pixel-level prediction is performed by a simple

decoder attached to the prepended classification token (cls).

We choose a trainable linear layer that maps to the input

resolution. The architecture is demonstrated in Figure 1.

As the Transformer architecture remains intact, most of

the inductive biases come from the tokenisation procedure.

By keeping the inductive bias to a minimum we remove any

restrictions to known concepts, enabling unprecedented in-

formation combination of different input datasets, represent-

ing local and global inputs. For example, attention allows i)

inter-dataset interactions, i.e. information flows from distant

large-scale regions of coarse resolution to high-resolution

localised windows, and ii) intra-dataset interactions, where

several Earth system processes and interactions are modelled

at a global scale while identifying location-specific charac-

teristics for each region independently (depicted in Figure 4,

Appendix D). The simplicity of the method makes it easily

extensible to other data sources, as well as to the inclusion

of a temporal dimension that we do not address in this study.

3. Experiments
We conduct our experiments on the SeasFire cube [1],

a spatio-temporal dataset for subseasonal to seasonal wild-

fire forecasting. It contains 21 years of data (2001-2021)

at a global scale, in an 8-days temporal and 0.25◦ spatial

resolution. The cube includes a diverse range of seasonal

fire drivers, combining atmospheric, vegetation, and anthro-

pogenic variables along with climate indices, in addition to

target variables related to wildfires such as burned areas, fire

radiative power, and wildfire-related emissions.

Building on the SeasFire cube, Prapas et al. [16] defined

burned area pattern forecasting as a segmentation task. As

input, they use local patches that contain different channels

of the fire driver variables and train a U-Net++ [22] to predict

the presence of burned areas at a future time step. Their U-

Net++ demonstrated a predictive skill greater than the burned

area mean seasonal cycle for a lead forecasting time of up to

2 months. We follow a similar setup, where given a snapshot

of the fire driver variables at timestep t we want to predict

the presence of burned areas at a future timestep t+ h. For

the local input, we extract patches of size 80 × 80, and as

such, the world represented at 0.25◦ (1440× 720 cells), is

split into 18 × 9 = 162 local input patches. To extract the

global input, we coarsen the cube to 1◦ (see Appendix C),

reducing its size by a factor of 16, making the global input

size 360×180. Along with 10 fire driver variables extracted

from the cube, the same for both local and global inputs, we

calculate a global positional encoding, i.e. sine and cosine

of the longitude and latitude. For each sample, 10 OCIs are

extracted for the 10 months preceding t. The target is the

presence of burned area at time-step t+ h for the region of

the local input, where h is the lead time forecasting horizon.

As such, a sample is comprised of four vectors; i) a local

input xl of size (14, 80, 80), ii) a global input xg of size

(14, 360, 180), iii) an OCI input xi of size (10, 10) and iv) a

target vector of size (1, 80, 80). The variables used are shown

in Appendix A. The model’s performance is evaluated using

the Area Under the Precision-Recall Curve (AUPRC). The

train, validation, and test split is time-based, using years 2002

- 2017 for training, 2018 for validation and 2019 for testing.

Only samples that contain burned areas are considered.

We assess the following models: i) a U-Net++, which

uses only local input xl [16], ii) a simple ViT, which uses

only local input xl, iii) TeleViTi, which uses OCIs xi along

with local input xl, iv) TeleViTg, which uses only global

input xg along with local input xl, and v) TeleViTi,g , which

uses both OCIs xi and global input xg along with the local

input xl. The hyper-parameters have been tuned for simple

ViT and applied to TeleViT models that use the same core ar-

chitecture. We provide detailed information on architectural

and training choices in Appendix B.

The performance of the five models is examined in sev-

eral forecasting horizons h ∈ {1, 2, 4, 8, 16}. A model that

predicts at the maximum forecasting horizon, i.e. 16×8-days

in advance, learns to predict the burned area pattern of a

particular 8-day period approximately four months in ad-

vance. A different model is trained for each h, for a total of

25 experiments.

4. Results and Discussion
Figure 2 summarises the results of the experiments. In

general, all the models exhibit a declining trend in perfor-

mance as the forecasting window increases. The decline,

however, is much less steep for teleconnection-driven mod-

els, than for the baselines (ViT and U-Net++). ViT proves
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Figure 2. AUPRC performance of the different models for forecast-

ing windows of 1, 2, 4, 8 and 16×8-days in advance.

to be a stronger baseline, outperforming U-Net++ with the

exception of the 16×8-days, where U-Net++ overtakes it

by a small margin. TeleViTg achieves a comparable perfor-

mance to ViT for short forecasting windows of up to 4×8-

days, while it shows greater robustness to the increase of the

forecasting window. TeleViTi and TeleViTi,g consistently

surpass the baselines, with larger performance gaps as the

lead time increases. Notably, TeleViTi,g has the dominant

performance, which indicates the benefits of a synergistic

effect between teleconnection indices and global-scale rep-

resentations. Interestingly, it achieves high gains even in

short forecasting windows, which suggests that contextual

information brought by this combination is helpful beyond

teleconnections that operate on larger temporal scales. Fig-

ure 3 shows how the predictions compare to the target for a

specific sample date, demonstrating high agreement.

In general, the results demonstrate TeleViT’s ability to

successfully fuse local and non-local Earth system informa-

tion and pave the road for exciting future research. Both

global-scale inputs and OCIs can bring performance gains,

but it is not clear if this is due to the same reasons. Further

work is needed to investigate the relative contribution of

each input. This urges us to comprehend the models, eluci-

dating both familiar and undiscovered interactions between

teleconnections and their influence on burned area patterns.

A thorough examination of the attention maps may offer

valuable insights in this regard, potentially shedding light

on the underlying mechanisms. There is also much poten-

tial for further investigation of tokenisation schemes. The

performance improvement induced by the introduction of

coarsened global views may suggest that OCIs are a simpli-

fied proxy of the Earth system state that could be enhanced

by global state representations. Further investigation will

reveal the contexts where this enhancement is most pro-

nounced. Future work can exploit time series for both local

and global inputs. In fact, it can be tested if global inputs

with a temporal component can replace the indices. Finally,

using models that treat the Earth as a system holds immense

promise for scientific knowledge discovery, especially when

incorporating knowledge of the physical systems.

Figure 3. A sample prediction versus the target for the best model,

predicting at 4×8-days lead forecasting time. Sea and values lower

than 0.05 are masked out. Confidence is determined as the softmax

score of the positive prediction.

5. Conclusions
In this work, we propose TeleViT, a transformer-based ar-

chitecture that can leverage local and non-local information

to model global Earth system processes. Using the SeasFire

cube, we showcase our model’s ability to improve burned

area pattern forecasting using climatic indices and coarsened

global views of fire driver variables. This improvement is

intensified for longer temporal forecasting horizons, where

teleconnections are expected to have a more significant im-

pact, strengthening our hypothesis that TeleViT can discover

such long spatio-temporal Earth system interactions.

The combination of local information, climatic indices,

and global views of the Earth holds significant potential for

various HADR applications, promising enhanced anticipa-

tion capabilities at longer temporal horizons. This includes

forecasting extreme events such as floods or droughts, the

intensity of tropical cyclones, impacts on food security or hu-

man displacement. These applications can benefit from the

enhanced prognosis, potentially improving proactive strate-

gies and resource allocation in the face of disasters.
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A. Input Data from the SeasFire cube
Table 1 shows which variables are used from the SeasFire

cube [1], along with some pre-processing made for each vari-

able. Total precipitation and population are log-transformed

with log(1 + x) to follow a less skewed distribution. For

more details on the variables, the reader is referred to the

cited dataset.

Full name Pre-processing

Local/Global Variables

Mean sea level pressure

Total precipitation Log-transformed

Vapour Pressure Deficit

Sea Surface Temperature

Mean Temperature at 2 meters

Surface solar radiation downwards

Volumetric soil water level 1

Land Surface Temperature at day

Normalized Difference Vegetation Index

Population density Log-transformed

Cosine of longitude Calculated

Sine of longitude Calculated

Cosine of latitude Calculated

Sine of latitude Calculated

Climatic Indices

Western Pacific Index

Pacific North American Index

North Atlantic Oscillation

Southern Oscillation Index

Global Mean Temperature

Pacific Decadal Oscillation

Eastern Asia/Western Russia

East Pacific/North Pacific Oscillation

Niño 3.4 Anomaly

Bivariate ENSO Timeseries

Target Variable

Burned Areas from GWIS Made binary

Table 1. Input and target variables used from the SeasFire cube for

all settings. The same variables are used for both local and global

views.

B. Model Details and Hyperparameters
Models are trained for 50 epochs. We use the cross-

entropy loss and the Adam optimizer to train the models.

For the U-Net++ model, the initial learning rate is set to

0.001, while for the Transformer models, it is set to 0.0001.

The learning rate is reduced on the plateau and the weight de-

cay is set to 0.000001. The model with the lowest validation

loss is used for testing. Before entering the models, local and

global inputs are normalized. OCIs, which are anomalies are

divided by their standard deviation.

The encoders of both ViT and TeleViT consist of K = 8
layers, with A = 12 attention heads each, and an embedding

dimension D = 768. For the asymmetric tokenisation, we

set Pl = (1, 16, 16), Pg = (1, 30, 30) and Pi = 1. This

means the following:

• The local input xl of size (14, 80, 80) is tokenised spa-

tially in 5× 5 number of tokens with size 16× 16.

• The global input xg of size (14, 360, 180) is tokenised

spatially in 12× 6 number of tokens with size 30× 30.

• The OCI input xi of size (10, 10) is tokenised in 10×10
number of tokens.

C. Coarsening the SeasFire cube
The SeasFire cube is provided as a xarray-compatible

file that is in Zarr format, which makes it easy to coarsen

with xarray. All that is needed is to provide an aggregation

function for each of the variables and a coarsening factor for

each dimension. We use a coarsening factor of 4 along the

longitude and latitude dimensions to convert the cube from

0.25◦ to 1◦ spatial resolution and all the input variables are

mean-aggregated.

D. Interactions between the different input
datasets

Figure 4 shows different interactions between the differ-

ent input datasets captured by attention.

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

Local Indices Global

L
o
ca

l
In

d
ic

es
G

lo
b
al

Figure 4. Depiction of intra-dataset (blue) and inter-dataset interac-

tions (orange) in an attention matrix for a sequence of six tokens

with an equal number of tokens for each data source.
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