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Abstract

Rapid and accurate building damage assessments from
high-resolution satellite imagery following a natural disas-
ter is essential to inform and optimize first responder efforts.
However, performing such building damage assessments in
an automated manner is non-trivial due to the challenges
posed by variations in disaster-specific damage, diversity
in satellite imagery, and the dearth of extensive, labeled
datasets. To circumvent these issues, this paper introduces
a human-in-the-loop workflow for rapidly training building
damage assessment models after a natural disaster. This
article details a case study using this workflow, executed in
partnership with the American Red Cross during a tornado
event in Rolling Fork, Mississippi in March, 2023. The out-
put from our human-in-the-loop modeling process achieved
a precision of 0.86 and recall of 0.80 for damaged build-
ings when compared to ground truth data collected post-
disaster. This workflow was implemented end-to-end in un-
der 2 hours per satellite imagery scene, highlighting its po-
tential for real-time deployment.

1. Introduction
Rapid building damage assessment in the wake of a natu-

ral disaster can inform first responders about the types and

magnitudes of resources needed on the ground to support

affected populations. Advancements in automated build-

ing damage assessment have been supported by the avail-

ability of high resolution imagery pre and post a disaster

paired with corresponding damage labels in datasets such

as xBD [5] and xFBD [8]. Variants of semantic segmen-

tation methods have been applied to pre and post-disaster

imagery to perform the dual tasks of outlining building foot-

prints and classify damaged buildings ([6, 7, 1, 4]). Despite

these advancements, building damage assessment models
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suffer from significant degradation when evaluated on out-

of-distribution datasets [2, 4] due to the breadth of varia-

tions in the type of disaster, image modality, capture con-

ditions, weather, and data size, among others. These issues

limit the usability of existing disaster assessment models in

real world scenarios where quick and accurate results are

needed for a specific area using any available imagery.

We present a rapid response damage assessment workflow

that utilizes a small number of labels and only post-disaster

imagery. We demonstrate a fast mechanism by which a

model can be tuned to perform well under a new disaster us-

ing only a small number of training examples thereby elim-

inating the need for generalization. In addition, this method

reduces the dependence on pre-post image pairs, resulting

in a more streamlined damage assessment pipeline. This

workflow was deployed immediately after the occurrence

of a natural disaster and validated in collaboration with the

American Red Cross (ARC), showing that this approach can

support rapid disaster response.

2. Application Context
On Friday, March 24, 2023, an EF4 tornado formed

in Mississippi. The tornado lasted for 71 minutes and

caused 16 fatalities and 165 injuries. It first touched down

in Issaquena County, and tracked northeastward through

Sharkey and Humphreys Counties, causing extensive dam-

age in Rolling Fork, Midnight, and Silver City. The most

severe damage was observed in Rolling Fork, where nu-

merous structures were destroyed or severely damaged, in-

cluding homes, businesses, a hospital, schools, and a water

tower. Throughout its path, the tornado produced varying

degrees of damage, from minor tree and power pole dam-

age to catastrophic destruction of buildings and infrastruc-

ture. The tornado eventually dissipated after having traveled

59.4 miles (95.6 km) in total.

On March 25th, our partners at the ARC suggested that we

use the event to test our damage assessment workflow, to
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Figure 1. (Left) Post disaster Planet SkySat imagery over Rolling Fork, Mississippi from March 25th; (Right) Building level model damage

estimates (color gradient indicates damage from no damage colored in white to destroyed in red).

provide them with satellite imagery-based damage analysis

to inform ground operations that would occur over the fol-

lowing week. The same day, a Planet Labs SkySat satellite

captured a clear post-disaster image of the town of Rolling

Fork, which provided us with the necessary data to imple-

ment our workflow (described in Section 3).

On March 26th, we executed our damage assessment

workflow, and provided the ARC with a set of 1347 building

footprints (from the Global Microsoft Building ML Foot-

prints dataset [9]), and an estimate of how damaged each

building was on a scale of 0 to 100.

Over the following weeks, the ARC deployed more than

800 trained disaster workers to respond to the event. These

disaster workers provided sheltering to those displaced by

the disaster as well as supported health, mental health ser-

vices, and recovery support. ARC disaster workers pro-

vided shelf-stable meals in the community, where other re-

sources were not available and provided relief items includ-

ing comfort kits to people in need. The disaster response

team trained in damage assessment conducted more than

3500 assessments of residential damage across the state of

Mississippi. The ground truth damage assessment included

over 909 addresses in Rolling Fork where they categorized

the building at each address according to the FEMA build-

ing damage scale: no visible damage, affected, minor dam-

age, major damage, or destroyed [3].

In the following sections we outline our damage assessment

workflow, describe our modeled output over Rolling Fork

(as shown in Figure 1), and perform a post-hoc analysis of

the model output using the ground truth data.

3. Damage Assessment Workflow
Given a new disaster area of interest (AOI), we outline our

building damage assessment workflow:

Satellite image and building footprint acquisition.
We acquire post-disaster high-resolution satellite imagery

scenes overlapping the AOI. A scene is defined as an im-

age captured from the same pass by a satellite1. We obtain

corresponding building footprints (polygons) for the same

scene from OpenStreetMap [11] or the Microsoft Building

Footprint dataset [9].

Satellite image-based label acquisition. We set up an

instance of the “satellite imagery labeling tool” [10] with

post-disaster imagery. We manually label a random selec-

tion of building footprints in the AOI as “damaged” or “not

damaged” based on a visual inspection of the post-disaster

imagery and use them for validation of the modeling output.

Model training. First, we manually label a total of ≈ 100
example polygons of “background”, “building”, and “dam-

aged building” classes using the labeling tool instance.

Next, we fine-tune an pre-trained semantic segmentation

model 2 with the cumulative labeled examples. We run the

fine-tuned model on the entire scene to classify each pixel

as: “background”, “building”, or “damaged building”. We

1Large AOIs are often made up of multiple scenes from potentially

different satellite passes at different times of day, with different imaging

angles, cloud coverage, illumination, and on-the-ground conditions.
2We used a U-Net with an ImageNet pre-trained ResNet-50 backbone

as our semantic segmentation architecture, but practitioners can choose

alternative architectures with pre-trained models better suited to the task.
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compute, for each building footprint in the AOI, the per-

centage area of the footprint that is classified as “damaged

building”, ŷi. These damage proportions are used to repre-

sent the likelihood that a building is damaged. This process

is repeated, per scene, until the performance of the modeled

output is acceptable (with respect to the validation labels).

Formally, the output of this building damage assessment

process is a set of N building footprints (polygons) and the

associated damage estimates, {ŷi}Ni=1 where ŷi is the esti-

mated percent damage of the ith building, i.e. ŷi ∈ [0, 100].

Validation. Given building level percent damage esti-

mates obtained from a model, we determine the perfor-

mance of the model by computing a set of validation metrics

with respect to labeled building level data. Here, labeled

building level data can be obtained either from a ground

truth assessment by experts (e.g. a categorization of each

building according to the FEMA building damage crite-

ria) or, less desirably, by an independent visual interpre-

tation of the post-disaster imagery. Formally, we assume

that we have N labels over C damage classes, {yi}Ni=1,

where yi ∈ {1, · · · , C} and the damage classes represent

categories such as “no visible damage”, “affected”, “minor

damage”, “major damage”, and “destroyed”.

First, we aggregate the C damage classes into two classes,

i.e. converting the problem into a binary classification prob-

lem. For example, if our damage labels follow the FEMA

categorization, we may consider “major damage” and “de-

stroyed” as a single “damaged” class with the remaining

categories grouped into a “not damaged” class.

Now, given a percent damage estimate, ŷi, and binary dam-

age label, yi, for each building, we compute precision and

recall for the damaged class under an any damage threshold

(i.e. where ŷi > 0), as well as a precision-recall curve and

average precision metric. More specifically, given a thresh-

old value, θ, we compute the following:

tpθ true positives, the number of buildings in which ŷi > θ
and yi = 1, i.e. the number of buildings where our

model estimated a damage percentage greater than θ
and the building was “damaged”.

fpθ false positives, the number of buildings in which ŷi > θ
and yi = 0, i.e. the number of buildings where our

model estimated a damage percentage greater than θ
and the building was “not damaged”.

fnθ false negatives, the number of buildings in which ŷi ≤
θ and yi = 1, i.e. the number of buildings where

our model estimated a damage percentage less than or

equal to θ and the building was “damaged”.

Precision and recall under the any damage threshold (θ = 0)

are then:

Precision0 =
tp0

tp0 + fp0

(1)

Recall0 =
tp0

tp0 + fn0
(2)

Intuitively, precision is the fraction of buildings that the

model estimates to be damaged, that are, in fact, damaged.

E.g. if precision is 0.8, then 1 out of every 5 buildings the

model predicts to be damaged, will not be damaged. Sim-

ilarly, recall is the fraction of damaged buildings that the

model correctly estimates to be damaged. E.g. if recall is

0.8 then the model identified 80% of the damaged buildings

in the scene.

Setting θ to all possible values between 0 and 1 and plot-

ting the resulting precision and recall values gives us a

“precision-recall curve” that shows the trade off between

precision and recall. As the percent damage threshold with

which we use to classify a building as damaged increases,

the precision of the model will increase while the recall

decreases. Intuitively, the precision-recall curve serves as

proxy for damage localization, where “major damage” and

“destroyed” buildings should have large percent damage es-

timates.

Finally, average precision (AP) is a summary of precision

and recall across multiple thresholds. Specifically, AP is

a weighted mean of precisions over the set of possible θ
values, where the weighting is obtained from the change in

recall between thresholds [12]:

AP =
∑

n

(Recallθn − Recallθn−1
) ∗ Precisionθn (3)

Figure 2. Precision-recall curve for our building damage estimates

compared to image interpretation based labels.
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Figure 3. Precision-recall curves for our building damage estimates compared to ground truth labels under two definitions of “damaged”

buildings. The (left) panel shows the result when “major damage” and “destroyed” points are considered “damaged” while the (right)
panel shows the result when only the “destroyed” points are considered “damaged”.

4. Rolling Fork, Mississippi Results
For our Rolling Fork building damage assessment, we pro-

duced percent damage estimates for 1,347 buildings over

the city of Rolling Fork, Mississippi using Planet SkySat

imagery from March 25th, 20233. We annotated 153 exam-

ples of “background” (34 examples), “undamaged building”

(71 examples), and “damaged building” (48 examples), then

used these to train a semantic segmentation model that can

make predictions over the entire image.

We perform two validation efforts – using labeled data col-

lected through a visual interpretation of the satellite im-

agery and using labeled data collected through a ground

truth analysis. We detail the results of these efforts below.

4.1. Validation with image-based labels

Our initial validation effort involves annotating a set of 250

randomly selected building footprints as “damaged” or “not

damaged” based on an interpretation of the post-disaster

imagery that was independent of the annotation effort used

to train the damage assessment model. Our building level

damage estimates have an average precision of 0.96 with a

precision-recall curve shown in Figure 2. The precision and

recall under the “any damage” threshold are 0.96 and 0.74.

4.2. Validation with ground truth based labels

We received 909 labels from the ARC based on a ground

truth analysis that they performed during their disaster re-

sponse. These labels were assigned to addresses and cat-

egorized according to the FEMA building damage assess-

ment scale. We first geocoded the addresses to obtain lati-

tude, longitude point locations, and matched them to the set

3Scene ID: 20230325 195842 ssc11 u0001.

of building footprints that we performed the damage assess-

ment over. Due to noise in the geocoding process and the

fact that not all buildings were analyzed by the ARC, some-

times the ground truth points are not contained in a building

footprint4. Thus, we associate each ground truth point with

the nearest building footprint in a 20 meter radius (if any).

We compute the validation metrics over the 830 ground

truth points that are associated with a building footprint.

If we consider ground truth points that are categorized as

“major damage” or “destroyed” to be the “damaged” class,

and the remaining categories to be an “undamaged” class,

precision and recall under the “any damage” threshold are

0.862 and 0.801. When only the “destroyed” class is consid-

ered to be “damaged”, then precision and recall are 0.84 and

0.90. Figure 3 shows the localization performance of the

model where average precision increases from 0.81 (“ma-

jor” and “destroyed”) to 0.86 (only “destroyed”).

5. Conclusion
Our work demonstrates that a human-in-the-loop workflow

can provide a rapid and effective method of building dam-

age assessment post-natural disasters. Our method has

demonstrated its practical usefulness by quickly training

with minimal data, effectively bypassing the requirement

for extensive labeled datasets and the challenges of train-

ing models that account for diverse disaster scenarios and

satellite imagery variations. A key advantage of the work-

flow is its capability to be implemented in under 2 hours

per satellite imagery scene by any user familiar with anno-

tating satellite imagery, which enables its potential use in

4Examples are i) the point occurs along a road, ii) several points occur

on a single building or iii) a building has no matching points.
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production scenarios where immediate action and response

are of paramount importance. This was evident in the case

of the tornado event in Rolling Fork, Mississippi, where the

model, having been trained and validated collaboratively

with the ARC, resulted in a precision of 0.86 and a recall

of 0.80 when evaluated against ground truth data. Future

work will focus on refining this workflow, exploring scala-

bility across disaster types, and strengthening collaboration

between AI and human expertise.
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