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Abstract

Flood inundation forecast provides critical information
for emergency planning before and during flood events.
Real time flood inundation forecast tools are still lacking.
High-resolution hydrodynamic modeling has become more
accessible in recent years, however, predicting flood extents
at the street and building levels in real-time is still compu-
tationally demanding. Here we present a hybrid process-
based and data-driven machine learning (ML) approach
for flood extent and inundation depth prediction. We used
the Fourier neural operator (FNO), a highly efficient ML
method, for surrogate modeling. The FNO model is demon-
strated over an urban area in Houston (Texas, U.S.) by
training using simulated water depths (in 15-min intervals)
from six historical storm events and then tested over two
holdout events. Results show FNO outperforms the base-
line U-Net model. It maintains high predictability at all
lead times tested (up to 3 hrs) and performs well when ap-
plying to new sites, suggesting strong generalization skill.

1. Introduction and application context
Flooding is the most disruptive natural disaster, caus-

ing tens of billions of dollars of direct economic loss each

year and affecting millions of people [4, 23]. In coastal ar-

eas, flooding may result from overbank river flow (fluvial),

heavy rainfall (pluvial), coastal storm surge, or a combi-

nation of all three. A warming climate is likely to further

intensify the extreme precipitation, induce global sea level

rise, and increase the frequency and intensity of tropical cy-

clones, making future flooding events more severe [14, 39].

In the U.S., tens of millions of people are already exposed

to the risk of coastal flooding [35]. By 2050, the U.S. pop-

ulation density in flood-prone coastal zones and megacities

is expected to grow by 25% [1], and flood risk is projected

to increase by 26%, with hotspots expected in highly popu-

lated counties along both coasts, as well as across the North-

east and through Appalachia [5, 37].

Flood inundation modeling (FIM), seeking to predict the

flood water extent and depth using hydrodynamic models,

is an integral part of flood risk management. Two ma-

jor usages of FIM may be identified, flood susceptibility

mapping and real time forecasting. In flood susceptibility

mapping, FIM is used to quantify risks to flood events of

a particular return period (e.g., 100-year event), providing

risk-informed inputs to planners and insurers for land use

zoning and infrastructure development. In real time fore-

casting, FIM is used to provide prediction of surface wa-

ter levels during storm events. State of the art hydrody-

namic models typically solve 2D full shallow water equa-

tions (SWE), which are simplified Navier–Stokes equations

representing depth-averaged mass and momentum conser-

vation [4]. A flood inundation model is forced by initial

and boundary conditions such as upstream inflow and pre-

cipitation. For urban settings, the model spatial resolution

should ideally be 3–10 m and the temporal resolution should

be sub-hourly [4]. High-resolution FIM is not only neces-

sary for street-level flood impact mapping, but also helps to

analyze the exposure and vulnerability of local communi-

ties, especially disadvantaged population groups [3, 26, 28].

However, solving SWE at high spatiotemporal resolutions is

still computationally demanding, presenting a major chal-

lenge to its operational use.

AI/ML-enabled surrogate models can provide a poten-

tial solution to scaling up FIM. In a broader context, AI/ML

is envisioned to ultimately power the development of earth

system digital twins [6, 16]. Extreme weather forecast-

ing represents a major component of earth system digital

twins. To demonstrate such a potential, this study presents

a physics-based, hybrid ML approach for FIM. Physics-

informed ML models are now widely developed and used

in climate and earth system sciences to incorporate domain
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knowledge stemming from empirical and physical princi-

ples [9, 16, 17]. Integration of prior knowledge and/or phys-

ical constraints not only allows for training of more accu-

rate ML models with sparse/noisy data, but also leads to

more interpretable results. Hybrid ML, which is a form of

physics-informed ML, utilizes outputs from process-based

models as inputs to ML models. The ML algorithm we

adopted in this work is Fourier Neural Operator (FNO),

which is a type of neural operator for approximating map-

pings between infinite-dimensional function spaces [21].

FNO converts spatial domain representation into the spec-

tral space through Fourier transforms, thus enabling more

efficient computation of convolutions [19].

Main Contributions. The main contributions of this

work are summarized below:

• We developed an FNO-based, flood inundation model

for real-time flood mapping at multiple lead times

• A physics-based loss function is used to minimize

the mismatch in predicted water depths and in spatial

derivatives

• Results, demonstrated over an urban area in Houston,

suggest the FNO model is more efficient than a U-Net-

based baseline, and finally

• We showed that an FNO model pretrained on similar

domains can be applied to the study site without fine-

tuning, suggesting good generalization capability

2. Related work
FIM has been commonly used for flood susceptibility

mapping [7]. Applications of (near) real time flood in-

undation mapping have only risen in recent years because

of increased availability of SWE solvers and AI/ML. In

[38], a random forest model was trained to map topographic

and environmental features to hourly water depths simu-

lated by a hydrodynamic model at 16,914 street segments

in the coastal city of Norfolk (Virginia, U.S.). Guo et al.

[13] presented a data-driven approach for maximum water

depth prediction using CNN but assumed steady state. In

[15], a generative adversarial network (GAN) was trained

using synthetic rainfall events and simulated water depths.

Their GAN-based approach was recently extended to in-

clude static features (e.g., elevation and slope) such that

the trained model can be applied in zero-shot learning [10].

Note that many of these previous FIM studies only con-

sidered a single lead time [10, 29]. Satellite remote sens-

ing provides flood extent information, but the coarse spa-

tial resolution and latency of most satellites largely restrict

their use to post-event impact assessment, such as map-

ping flooded areas using multispectral surface reflectance

imagery [25], identifying the flood water extent from syn-

thetic aperture radar (SAR) or multi-spectral (MS) imagery

[18, 30]. To the best of our knowledge, neural operators

have not been applied to FIM.

3. Methods
FNO The goal of neural operator learning is to learn a

mapping between two infinite-dimensional spaces by us-

ing paired inputs/outputs. Specifically, let D ∈ R
d and

D′ ∈ R
d′

be bounded domains, and A and U be input and

output function spaces defined on D and D′, respectively.

In our case, the input space consists of meteorological forc-

ing (precipitation), static features (e.g., elevation) and/or an-

tecedent water depths, while the output space represents the

predicted surface water depths. Let G† represent an opera-

tor that maps the input to output, G† : A −→ U . A neu-

ral operator Gθ is a parametric map that approximates G†,
where θ ∈ Θ are trainable parameters that can be obtained

by solving a minimization problem with a loss function L
[21]

min
θ∈Θ

E
(
L(Gθ(a), G

†(a))
)
, (1)

FNO seeks to approximate the following integral kernel op-

erator commonly used in solutions of partial differential

equations [21]

(K(vl)) (x) =
∫
D

κ(x, y)vl(y)dvl(y), (2)

where x, y ∈ D, vl is a function, and κ(x, y) is a kernel

function. In the Fourier integral operator, the kernel func-

tion is replaced by a convolution operator

(K(vl)) (x) = F−1 (Rφ · F(vl)) (x), (3)

in which F and F−1 are forward and inverse Fourier trans-

forms, and Rφ is the Fourier transform of a periodic func-

tion κ that is parameterized by φ ∈ Θ. Assuming uniform

discretization, thenF is replaced by Fast Fourier Transform

(FFT), and Rφ is approximated as a complex-valued tensor

comprising a collection of truncated Fourier modes [21] and

the values of Rφ are learned from training data.

Loss function We used the relative L2 error as loss func-

tion, which has been observed to impose a good normaliza-

tion and regularization effect that prevents overfitting [19].

Inspired by physics informed ML, we further minimized

mismatch of spatial derivatives in terms of relative L2 er-

ror [27, 36]

Rel.Loss =
‖u− û‖
‖u‖ + β1

‖du/dx− dû/dx‖
‖du/dx‖

+β2
‖du/dy − dû/dy‖

‖du/dy‖
(4)

where u and û are simulated and predicted water depths,

dx, β1 and β2 are hyperparameters. We assigned dx = 0.2
and used 0.1 for both β1 and β2 after a grid search.
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4. Experiments
Physics model setup and dataset creation The effi-

cacy of FNO was demonstrated via a series of experi-

ments. Under the single-domain, multi-event setting, we

considered a 1.3 × 2.6km2 domain located in the Brays

Bayou watershed near downtown Houston (D4 in Fig.1A).

Brays Bayou is a fully urbanized watershed. Land use

comprises of residential, industrial, and commercial build-

ings. The bayou flows eastward to its confluence with the

Houston Ship Channel. Multiple historical storm events

were simulated using the open-source CREST-iMAP, a

coupled hydrology-hydraulic framework for riverbank flow

and overland flood inundation modeling [20]. Previously,

CREST-iMAP has been validated against Hurricane Har-

vey observations (e.g., streamflows, high water marks, and

flood insurance claims) and showed comparable or better

performance than other state-of-the-art hydrodynamic mod-

els [20]. In this study, CREST-iMAP was forced by using

a high quality, radar-based quantitative precipitation esti-

mation (QPE) product—the Multi-Radar/Multi-Sensor Sys-

tem (MRMS) data published by the National Severe Storms

Laboratory (NSSL) in U.S. National Oceanic and Atmo-

spheric Administration (NOAA). MRMS comes at 1-km

resolution in 2-min intervals. It is behind several rainfall

nowcasting DL models such as Google’s MetNet models

[11, 33]. In Fig.1B, a typical flooding scene is shown. We

used simulations corresponding to six storm events from

NOAA storm inventory for training and the rest for testing

(TableA1. Under the multi-domain, multi-event setting, the

same NOAA storm events were first simulated over differ-

ent spatial domains (D1–D3 in Fig.1A). We then trained an

FNO model using D1–D3 data and tested on D4. More de-

tails on CREST-iMAP run configurations are provided un-

der Appendix A1.

Surrogate model training A hybrid FNO surrogate

model was trained for multi-step flood inundation predic-

tion. We assumed the process-based flood inundation model

and the FNO are running in parallel such that the outputs of

the process-based model are available for the FNO model to

ingest as predictors [34, 31]. To generate training datasets,

we aggregated the CREST-iMAP inputs/outputs to 15-min

intervals, and then sampled 128 × 128 input and output

patches from the spatial domain. Each 15-min frame was

sampled twice by randomly varying image centers within

the image bound. Fig.2 illustrates the architecture of the

model. Inputs to FNO include antecedent precipitation and

simulated water depths, and digital elevation model (DEM).

A key feature of FNO is it concatenates x- and y-coordinates

to the input features to help it capture dependencies between

inputs and spatial locations, enabling the model to general-

ize to new locations [21]. The target variable is predicted

water depth at a lead time, for which the target lead time

value is concatenated to the inputs as a label. Alternatively,

Figure 1. (A) Areal view of the Domain 4 (D4), which is located

in the Brays Bayou watershed in Houston, Texas, U.S. and (B)

an exemplary flooding scene, where darker blue indicates deeper

water. Map inset shows locations of all domains (D1–D4) used in

this study.

the target lead time can be treated as a trainable feature so

that the trained model works for arbitrary lead times. The

strategy was not used in this preliminary work. The FNO

architecture includes four 2D spectral convolution layers,

each followed by a GeLU activation layer. The data sam-

ples are split into training, validation, and testing in 0.8,

0.1, 0.1 ratios. The number of Fourier modes used is 16 in

both directions.

We trained the models in PyTorch Lightning [12] using

the Adam optimizer with an initial learning rate of 5e-4, a

cosine annealing training schedule [22], and early stopping.

Unless otherwise specified, the maximum epochs used is

60 and batch size is 8, which were found sufficient for this

problem. Training was done on an Nvidia RTX3090 GPU.

Training time per epoch is 72 sec wallclock time and infer-

ence time is 0.002 sec/sample. For baseline, we considered

a U-Net like model adapted from RainNet, which has a rel-

atively simple deep architecture but nonetheless performs

surprisingly well on radar-based precipitation nowcasting

problems [2]. RainNet still has 31.4M trainable parameters,

while FNO has 8.1M. More details on the baseline model

can be found in A2.

Performance metrics Model performance is measured

using Critical Success Index (CSI, range 0–1.0) and mean
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Figure 2. Architecture of FNO model, which consists of 4 blocks

of spectral convolution layers (SpectralConv2d), each followed by

a Gaussian Error Linear Units (GeLU) activation layer, where N
is the number lookback frames, m is a random future frame, C
is the channel dimension representing the number of static frames

(e.g., DEM) and dynamics frames.

absolute error (MAE, range 0–∞) that are often used in FIM

[33, 26]. CSI is defined as #Hits/(#Hits + #Misses +
#FalseAlarms) , where #Hits is the number of flood events

correctly predicted; #Misses is the number of flood events

incorrectly predicted as non-flood events; and #FalseAlarms

is the number of non-flood events incorrectly predicted as

flood events [8]. In this work, we used the average of

CSI calculated over three depth thresholds, 3cm, 10cm, and

25cm, to gauge model performance. In the literature 3cm is

often used as the threshold for nuance flooding [24]. Both

CSI and MAE were calculated at the grid cell level and then

averaged spatially and temporally.

5. Results

Single-domain multi-event results Table1 summarizes

CSI and MAE metrics on two holdout storm events. Note

the event on 2019/09/17 corresponds to Tropical Storm

Imelda, which is the fourth wettest event on record in Texas

[32]. At 12 lookback frames (i.e., 180min), FNO-12 outper-

formed U-Net-12 for all 12 lead times (Fig.3). The CSI of

both models drops at the beginning of streamflow ascend-

ing due to strong discontinuity in predictors, but quickly

bounces back for the rest of flood duration. As lead time

increases, the FNO performance decreases linearly; thus, it

is expected to give reasonable performance for longer lead

times than tested here.

As ablation studies, we considered longer lookback pe-

riods (24 past frames or 6 hrs), which did not improve the

results (FNO-24 in Table1). This is probably because of the

lack of long memory during storm events. We also consid-

ered a precipitation-only experiment (FNO-12P in Table1)

where no antecedent water depth information is used. In

that case the CSI dropped significantly, suggesting the im-

portance of hybrid forecasting.

Multi-domain multi-event results An FNO model pre-

trained using data from D1–D3 was applied to predict the

same events and results for D4. Results, shown in Table 1

under FNO-MD, suggest the pretrained model adapts to the

new domain well in this case, largely because of the physics

embedded.

Table 1. Metrics obtained for 15min and 180min lead times for

two test storm events, MAE—mean absolute error, CSI—critical

success index, numbers at the end of model names indicate the

length of lookback period, and MD indicates multdomain

Event Model 15min 180min

(CSI, MAE) (CSI, MAE)

2019/05/08 U-Net-12 0.9752, 0.0056 0.9275, 0.0168

FNO-12 0.9808, 0.0044 0.9324, 0.0153
FNO-24 0.9764, 0.0048 0.9240, 0.0193

FNO-12P 0.4861, 0.0825 0.4855, 0.0822

FNO-MD 0.9659, 0.0083 0.9032, 0.0218

2019/09/17 U-Net-12 0.9723, 0.0088 0.8982, 0.0320

FNO-12 0.9773, 0.0075 0.9008, 0.0286

FNO-24 0.9683, 0.0099 0.8914, 0.0348

FNO-12P 0.4550, 0.1197 0.4470, 0.1187

FNO-MD 0.9646, 0.0139 0.8895,0.0400

Figure 3. Comparison between U-Net and FNO: spatially averaged

critical success index (CSI) at the 15-min lead time (A, B), and

spatiotemporally averaged CSI at all lead times (C, D) for two test

events.

6. Conclusion

We have developed a Fourier Neural Operator (FNO)

model for multi lead time rapid flood inundation mod-

eling (FIM) by combining process-based modeling with

data-driven ML. Results indicate the hybrid FNO learns

the input/output mappings of the underlying hydrodynamic

model well. The model may be deployed in parallel with

the process-based modeling for rapid FIM.
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Appendix

A1. Model configuration
Storm events were retrieved from U.S. National Oceanic

and Atmospheric Administration (NOAA) catalog. Table

A1 shows the start and end dates of all storm events. The

events are further visualized on the streamflow hydrograph

in Fig. A1.

Resolution of the digital elevation model (DEM)

used in this study is 10m, which is obtained

from U.S. Geological Survey (USGS) https:
//www.usgs.gov/3d-elevation-program/
about-3dep-products-services. Streamflow

(USGS Gage 08075000) is used as upper boundary condi-

tion for hydrodynamic model CREST-iMAP (Fig. A1. We

used a radar-based precipitation forcing dataset, the MRMS

data from NOAA https://mrms.nssl.noaa.gov.

MRMS comes at spatial resolution of 4 km and 2-min

temporal resolution.

CREST-iMAP uses hydrological CREST to solve for

water balance equation and ANUGA-Hydro for hydrulic

modeling [20].

A2. U-Net model architecture
The U-Net architecture is based on the PyTorch im-

plementation of RainNet [2], https://github.com/
fmidev/rainnet.

The RainNet model was trained using the log hyperbolic

cosine loss function (logcosh), which has been shown to be

beneficial to precipitation nowcasting ML applications [2]

Logcosh =

∑n
i=1 log(cosh(ûi − ui))

n
, (5)
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Figure A1. Observed hydrograph at USGS Gage No. 08075000

provides the upstream boundary condition for the Brays Bayou

flood inundation simulation. In the plot, blue color arrows indicate

storm events used for training, while orange color arrows indciate

storm events used for test.

Figure A2. Digital elevation map (DEM) of the Brays Bayou study

domain

where cosh(x) = 1
2 (e

x + e−x), u and û are ”true” and

predicted water depths.

Table A2. The U-Net model architecture is based on [2]. C =
d ∗ nlookback + s is the number of inputs, where d is number of

dynamic variables, nlookback is the lookback length, and s is number

of static variables.

Layer Feature In Feature Out kernel size

Input C 64 3

D1 64 128 3

Maxpool 2

D2 128 256 3

Maxpool 2

D3 256 512 3

Maxpool 2

D4 512 1024 3

Maxpool 2

U1 1536 512 3

Upsample 2

U2 768 256 3

Upsample 2

U3 384 128 3

Upsample 2

U4 192 64 3

Upsample 2

Last 64 2 3

Output 2 1 1
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