
Appendix A. Supplementary Material
A.1. Training parameters

For road segmentation, our Dense-U-Net-121 was
trained using an NVIDIA RTX Titan GPU, with ImageNet
pre-training for the encoder, a cross-entropy loss, an ADAM
optimizer, an initial learning rate of 1e− 4 and an exponen-
tial learning rate decay of 0.8 applied after each epoch. We
applied random horizontal flips and 90◦ rotations. A quan-
tile truncation and a normalization were applied on each in-
put channel separately to remove the upper and lower 2% of
outliers.

For building segmentation, ImageNet weights were
used to initialize the model. The training was performed
on four NVIDIA RTX Titan GPUs using a cross entropy
loss with online hard example mining [14], stochastic gra-
dient descent (SGD) optimizer with an initial learning rate
of 0.01, weight decay of 0.001, and Nestrov momentum of
0.9. The learning rate was decayed and the training patches
are randomly flipped and rescaled. The image processing is
the same as for the road segmentation.

For training the person detection network we use a
batch size of 50 and adopted a learning rate of 5e−7, us-
ing the scheduling mechanism from [12]. Adam optimizer
with a decay of 5e−4 and a pre-trained model from the
MS COCO dataset [10] was used. We performed a statis-
tical analysis for selecting the anchor boxes. To calculate
the loss, we used a combination of logistic regression for
objectness error and complete IoU [18] for bounding box
error, similar to [12].

A.2. Details about the test data for road and build-
ing segmentation

Besides the MACS camera system [6], image data from
various systems were used. For these scenes, the data
was acquired by the 4K camera system [8] and from Ger-
many’s Federal Agency for Cartography and Geodesy (Dig-
ital Orthophotos, DOP20). All test images are resampled
to 50 cm/pixel for the road segmentation model and to
20 cm/pixel for the building segmentation model. In ad-
dition, in order to test the generalizability of the models in
different regions of operation, particularly in disaster-prone
developing countries, the trained models are tested in Beira,
Mozambique, and Kathmandu, Nepal, following cyclones
and earthquakes. The UAV image of Beira was provided
by WFP and Mozambique’s National Institute for Disaster
Management (INGC), and the aerial imagery of Kathmandu
was captured by the MACS system.

A.3. Detailed results for road segmentation

We tested the road segmentation method on 21 test areas
from Epeisses in Switzerland, from the Ahr Vally in Ger-
many, from Beira in Mozambique, and from Kathmandu in

Nepal. For all scenes except Kathmandu, we annotated the
images by hand following the centerline of the roads and
saved them as vector graphics. Figure 6, Figure 7, Figure 8
and Figure 9 show the predictions of our model and a dilated
version of our ground truth if available. Note that although
our model outputs pixel-wise segmentation, our metrics do
not compare them pixel to pixel to the labels as shown in the
figures. Rather, they are evaluated on a topological basis af-
ter the predictions have been thinned to a 1-pixel thickness,
equivalent to vectorizing them into centerlines.

In the Epeisses scene (see Figure 6), most roads were
correctly identified and accurately extracted, except for
some sections located close to the edges of the mosaic. This
is due to the lack of context given to the model, which ex-
pects the roads to be continuous as it has not been trained
to overcome sudden disruptions by the background areas in
the images.

In the Ahr Valley scene (see Figure 7), the model man-
aged to detect most roads in both the pre- and post-disaster
images, though we could not report results as no ground
truth was available for this area yet. In the pre-disaster im-
age, our model shows its capacity for generalizing well to
sub-urban scene types unseen during its training, as it was
only given to see regions from Southeast Asia. In the post-
disaster image, it has shown some confusion as to which
road to consider as still intact: there is in fact much water,
mud, and debris on the surface of the roads, making it more
difficult to draw a line between damaged and usable road
sections.

In the Beira scene (see Figure 8), while the images
are particularly challenging due to the presence of unpaved
roads or streets covered in sand in the aftermath of Cyclone
Idai, the model still manages to extract all the roads except
a few narrower ones. However, it did detect roads that the
annotators did not include in the labels due to occlusion or
the lack of clues as to their usability by vehicles. This begs
the question of the annotation policy and the boundaries be-
tween road and non-road objects in difficult scenarios where
they might either be not visible or require local knowledge
for a specific region.

In the Kathmandu scene (see Figure 9), the model was
faced with a complex urban infrastructure, featuring many
narrow, irregular, and therefore occluded streets, and often
unpaved roads. Nevertheless, it was capable of extracting
the vast majority of the roads with great accuracy, from
large arteries to small alleyways, even though the connec-
tivity of the mask may be improved in locations where the
road segments are kept apart by the occlusion of buildings.
In such scenarios, it actually becomes challenging to define
a fair, comprehensive road annotation policy, as expert on-
the-ground knowledge is required to define the difference
between a road and a simple large- drivable area not dedi-
cated to vehicles.



A.4. Detailed results for building segmentation

The building segmentation method is tested on 15 areas,
including those mentioned in the main text plus one area in
Kathmandu, Nepal (same as for the road segmentation).

In the Epeisses scene (see Figure 10), most of the build-
ings are extracted and only two buildings are omitted. On
the other side, large tents are mistakenly segmented due to
their similarity to real buildings. In addition, damaged and
collapsed buildings are classified as buildings but are not
labeled in the annotation. Overall, an F1 and IoU score of
47.72% and 31.33% are acquired. In the Ahrtal scene (see
Figure 11), we selected 10 regions (10.5km2) and manu-
ally annotated the building ground truth of the pre-flood
images. In the 10 annotated regions we achieved 86.66%
and 76.46% for building F1 and IoU scores respectively.
Figure 11 illustrates three small regions with pre- and post-
flood images. All pre-event images are DOP20, the post-
event image (b) is captured by the MACS camera system,
and (d) and (f) illustrate images captured by the 4k system.
Due to the difference in flight altitude and viewing angles
between the training and test data, the network was unable
to detect a couple of damaged buildings from a very oblique
view (see Figure 11 (d)), but still managed to accurately ex-
tract most of the buildings.

Within the Beira scenes (refer to Figure 12), the model
successfully identifies larger buildings, but fails to detect
the majority of smaller structures as shown in Figure 12 (i),
which is evidenced by the precision score of 76.51% and
recall score of 44.92%. This observation highlights the
need to address domain shifts between the training and test
datasets. In particular, when the building characteristics dif-
fer between the training and test areas, as in the case of
Beira, factors such as different size distributions and differ-
ent roof materials contribute to the observed drop in per-
formance. Furthermore, it is also crucial to properly ac-
count for the varying imaging conditions. The Beira test
data was acquired using a low-altitude UAV, resulting in
a centimeter-level GSD that has unique spectral features
even after downsampling. The black lines in Figure 12 (a)
resulted from co-registration with the pre-event imagery
(not shown). Due to memory constraints, the UAV images
are cut into smaller patches, resulting in unaligned image
boundaries.

In contrast to the outcomes observed in Beira, the visual
outcomes achieved in Kathmandu (see Figure 13) appear
promising, with the majority of buildings being successfully
identified despite their dissimilarity to the training data. As
ground truth data is unavailable for this scene, our analy-
sis is conducted exclusively through qualitative evaluation.
We study three different urban zones characterized by dif-
ferent building types and densities. Figure 13 (a) depicts a
typical densely populated urban area with small-scale resi-
dences. Despite significant differences in building charac-

teristics such as roof materials and density, a visual assess-
ment shows a similar level of performance to that achieved
in the European test areas. Similar results are found in the
samples of Figure 13 (c) and Figure 13 (e). The success ob-
served in the Kathmandu results underlines the robust gen-
eralizability of the method to MACS images despite the re-
gional differences.

A.5. Detailed results for person detection

In Figure 14, we present selected examples from our an-
notated training set, where each person is individually an-
notated with a bounding box. Additionally, we present the
results of our person detection algorithm applied to image
mosaics in Figure 15 for the near real time scenario and to
single images for onboard processing in Figure 16. In the
figures, we show zoomed areas that demonstrate both suc-
cesses and failures. For example, in Figure 15 (d), the very
high resolution of the image confuses the model, leading to
false detections of small objects such as stones, which can
resemble the appearance of people in images with larger
GSDs.

Details of the training dataset for person detection:
The dataset for person detection contains 311 annotated
aerial and drone images acquired between 2012 and
2022 over different regions in Germany, the Netherlands,
Switzerland, Spain, France, and Nepal. The sizes of the
images vary between 4864 × 3232 px, 5184 × 3456 px,
5616 × 3744 px, and 8000 × 6000 px. Care was taken dur-
ing the image selection process to guarantee that images
with different GSD, cloud cover, and acquired with differ-
ent weather conditions, sun positions, viewing angles, sea-
sons, times of day, types of scene (urban, suburban, ru-
ral, park, and recreation sites), and application scenarios
(rescue, crowd events, construction) were included in the
dataset. We divided the 311 images of our dataset into three
disjoint sets: 1) the training set consisting of 259 images
with 6934 annotations, 2) the validation set consisting of
25 images with 2706 annotations, and 3) the test set con-
sisting of 27 images with 410 annotations. The samples in
Figure 14 illustrate the diversity of the images within the
dataset.



(a) The complete scene in Epeisses with overlaid predictions

(b) success case: zoom-in view of the image (c) success case: zoom-in view of the predictions (d) success case: zoom-in view of the ground truth

(e) failure case: zoom-in view of the image (f) failure case: zoom-in view of the predictions (g) failure case: zoom-in view of the ground truth

Figure 6: Road segmentation results for the test area in Epeisses, Switzerland.



(a) DOP20 pre-disaster image (b) 4K post-disaster image

(c) DOP20 pre-disaster image with overlaid predictions (d) 4K post-disaster image with overlaid predictions

(e) zoom-in view of the DOP20 pre-disaster predictions (f) zoom-in view of the 4K post-disaster predictions

(g) zoom-in view of the DOP20 pre-disaster predictions (h) zoom-in view of the 4K post-disaster predictions

Figure 7: Road segmentation results for the test areas in the Ahr Valley, Germany.



(a) A selected scene from Beira with overlaid predictions

(b) success case: zoom-in view of the image (c) success case: zoom-in view of the predictions (d) success case: zoom-in view of the ground truth

(e) failure case: zoom-in view of the image (f) failure case: zoom-in view of the predictions (g) failure case: zoom-in view of the ground truth

Figure 8: Road segmentation results for a scene of the test areas in Beira, Mozambique.



Figure 9: Road segmentation results for a scene from Kathmandu in Nepal captured from a UAV at 8 cm/px and resampled
to 50 cm/px.



(a) The complete scene in Epeisses with overlaid predictions

(b) failure case: zoom-in view of the image (c) failure case: zoom-in view of the predictions (d) failure case: zoom-in view of the ground truth

(e) failure case: zoom-in view of the image (f) failure case: zoom-in view of the predictions (g) failure case: zoom-in view of the ground truth

Figure 10: Building segmentation results for the test area in Epeisses, Switzerland.



(a) DOP20 pre-disaster image with overlaid predictions (b) MACS post-disaster image with overlaid predictions

(c) DOP20 pre-disaster image with overlaid predictions (d) 4K post-disaster image with overlaid predictions

(e) DOP20 pre-disaster image with overlaid predictions (f) 4K post-disaster image with overlaid predictions

Figure 11: Building segmentation results of the selected areas in the Ahr Valley, Germany.



(a) A larger scene selected from Beira, Mozambique with overlaid predictions

(b) zoom-in view of the image (c) zoom-in view of the predictions (d) zoom-in view of the ground truth

(e) zoom-in view of the image (f) zoom-in view of the predictions (g) zoom-in view of the ground truth

(h) failure case: zoom-in view of the image (i) failure case: zoom-in view of the predictions (j) failure case: zoom-in view of the ground truth

Figure 12: Building segmentation result visualization of the test area in Beira, Mozambique.



(a) Zoom-in view of the image in dense urban area (b) Zoom-in view with the prediction in dense urban area

(c) Zoom-in view of the image in urban area with public park (d) Zoom-in view with the prediction in urban area with public park

(e) Zoom-in view of the image in urban area with more detached houses (f) Zoom-in view with the prediction in urban area with more detached
houses

Figure 13: Building segmentation result visualization of the test area in Kathmandu, Nepal. Three different urban areas are
selected for demonstration.



Figure 14: Samples of the person detection dataset. Each person is annotated with an individual bounding box. This figure
shows image samples from the training set.



(a) Downtown Brunswick, Germany. GSD = 3 cm, coverage = 0.1 km2, process time = 99s.

(b) Epeisses, Switzerland. GSD = 3 cm, coverage = 0.08 km2, process time = 47s.

Figure 15: Person detection on two example image mosaics processed in near real time.



(a) Downtown Brunswick, Germany. GSD = 4.2 cm, AP = 67%.

(b) Flood ruins Stolberg, Germany. GSD = 1 cm, AP = 46%.

(c) Villejust, France. GSD = 0.7 cm, AP = 79%.

Figure 16: Sample results from our test set for the onboard person detection with high and low confidence predictions marked
in green and orange, respectively. The ground truth annotations are represented by blue bounding boxes.


