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Abstract

Multi-person pose tracking is an important element for
many applications and requires to estimate the human poses
of all persons in a video and to track them over time. The
association of poses across frames remains an open re-
search problem, in particular for online tracking methods,
due to motion blur, crowded scenes and occlusions. To
tackle the association challenge, we propose a Gated At-
tention Transformer. The core aspect of our model is the
gating mechanism that automatically adapts the impact of
appearance embeddings and embeddings based on tempo-
ral pose similarity in the attention layers. In order to re-
identify persons that have been occluded, we incorporate
a pose-conditioned re-identification network that provides
initial embeddings and allows to match persons even if the
number of visible joints differ between frames. We further
propose a matching layer based on gated attention for pose-
to-track association and duplicate removal. We evaluate
our approach on PoseTrack 2018 and PoseTrack21.

1. Introduction

Multi-person pose tracking is highly relevant for a wide

range of applications such as virtual reality, autonomous

driving or sports analysis and requires to accurately esti-

mate and track the human poses of all persons throughout a

video. Despite of the recent progress in multi-person pose

tracking [28, 11, 19, 13, 32, 41, 29, 42, 37], the task re-

mains very challenging due to camera motion, motion blur,

occlusions, and a high variety in pose and scale [10]. Conse-

quently, a tracking approach must be robust to detection er-

rors and ambiguities. In particular, the assignment of highly

occluded persons in unusual poses is very difficult as shown

in Fig. 1, where three persons perform a gymnastic exercise

in water. For instance, the green bounding box intersects

with three persons and the respective pose overlaps with the

keypoints of the other persons. This poses a challenge, es-

pecially for on-line methods as assignments will be made

once a new frame arrives.

Related works such as [32, 29, 42, 41, 47] try to tackle

these challenges by generating future poses from a track’s

history, which are then matched with detections based on

pose similarities, e.g., based on Object Keypoint Similar-

ity (OKS) [29, 41, 47] or a pose-based matching layer [32].

Other works such as [37] process each sequence in an off-

line fashion, which is not feasible for real-time applications.

As these works mainly rely on pose-based similarities for

matching, these methods tend to fail to re-identify tracks

that have been occluded for longer periods of time or un-

dergo high pose deformations.

In our work, we thus focus on learning the association of

detected persons to tracks in an on-line fashion and propose

an approach that leverages the estimated poses, bounding

boxes, and the appearance of the detected persons to as-

sign them to previous tracks or initialize new tracks. Since

we can neither rely solely on appearance-based features

nor pose similarities due to multiple instances with simi-

lar appearance, changing camera views or scene switches,

which often occur in in-the-wild sequences, we introduce

two types of embeddings. The detection and track embed-

dings are based on appearance and used to measure the ap-

pearance similarity between detections and previous tracks.

The additional edge embeddings directly encode the pose

similarity between a pose and a track based on estimated

poses and bounding boxes. While the pose similarity is a

strong prior for tracking, it fails in case of fast motion or

if the person disappeared for some frames due to occlusion

or being outside of the camera view. We thus propose a

gated attention transformer that combines and weights the

attention matrices of both embedding types. All three em-

beddings are updated by a gated attention decoder and a fi-

nal matching layer assigns the detections to the tracks. The

matching layer also removes duplicates, i.e., multiple de-

tections for the same persons, and initiates new tracks. Fur-

thermore, we employ a pose-conditioned re-identification

model where the appearance features are normalized based

on the heatmaps of the detected keypoints.

We evaluate our approach on the challenging PoseTrack

2018 [1] and PoseTrack21 [10] datasets where it achieves

state-of-the-art results. In summary, we propose i) a gated

attention transformer that combines pose and appearance

similarity in a novel way for pose-to-track association and

ii) a novel matching layer for pose-to-track association and
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Figure 1. Qualitative examples of our proposed method on the PoseTrack21 dataset. The first row contains visual tracking results of our

method and the second row shows visualizations of CorrTrack with ReID [10].

duplicate removal.

2. Related Work

We briefly discuss some related works for person re-

identification and multi-person pose tracking.

Person Re-Identification: Methods for person re-

identification aim to generate robust feature representations

of a query person, which allows to re-identify each instance

of the particular person. These methods can be divided into

different categories such as re-identification based on global

features [25, 18, 8, 40], part-based approaches [34, 22, 33],

prior-based, i.e., pose- or mask-guided [14, 30, 46, 39, 27]

and video-based [6, 5, 23] re-identification. Part-based

models [34, 22, 33] divide each image into several parts and

extract distinct part-based features. Features for each part

are either trained individually [34] or further re-combined

to obtain visibility-aware features [33]. Li et al. [22]

propose to learn discriminative implicit parts (DiP) based

on a vision transformer (ViT) [12] architecture, which

tokenizes each image into equally sized patches. Pose-

[14, 30, 46, 39] or mask-guided [27] approaches aim to

suppress background-noise by learning occlusion- and

instance-aware features that are more robust in crowded

scenarios with occlusions. In this work, we propose Spa-

tially Adaptive Pose DEnormalization (SPAPDE) layers

for pose-guided re-identification and use it in the proposed

gated attention transformer for multi-person pose tracking.

Multi-Person Pose Tracking: Existing works on multi-

person pose tracking can be divided into two categories:

top-down methods [42, 37, 32, 29, 10, 47, 43] and bottom-

up methods [28, 19, 13, 11]. Former approaches employ

a person detector and estimate the pose for every detected

person individually based on temporal-context. Most meth-

ods employ a pose-warping [29, 10, 43] scheme that warps

tracked poses into the next frame or directly predict poses

based on the tracklet history [42, 32, 47, 21, 11], which are

then matched with detected poses using greedy or Hungar-

ian matching. In [37], an offline approach has been pro-

posed that merges multiple overlapping fixed-lengths track-

lets into tracks based on bipartite matching and Dijkstra’s

algorithm [9]. Bottom-up approaches [28, 19, 21, 11],

on the other hand, predict all keypoints within an im-

age simultaneously and generate tracks by solving spatio-

temporal graphs between detected keypoints. For instance,

[28, 11, 19] generate spatio-temporal vector fields, while

various spatio-temporal embeddings for the association of

keypoints and tracks are proposed in [21]. In contrast, per-

son instances are tracked in [13] using a semi-supervised

approach based on video instance correspondences. In this

work, we propose a gating mechanism that automatically

adapts the impact of appearance embeddings and edge em-

beddings, which are a strong prior and encode only pose

and bounding box similarity, in the attention layers.

3. Gated Attention Transformer for Multi-
Person Pose Tracking

On-line methods for multi-person pose tracking often

follow the tracking-by-detection paradigm [32, 15, 11, 28,

19, 41, 44, 29] and usually suffer from ambiguities and

occlusions. An example is shown in the second row of

Fig. 1 where the blue id jumps between two persons. In

order to make the matching between detections and previ-

ously tracked persons more robust, we propose a gated at-

tention transformer that directly learns the matching by a

gated matching layer. It combines appearance features and

encoded temporal person similarities. Since the importance

of appearance and pose similarity varies within a video and

between videos, in particular when a person has been oc-

cluded for a few frames, the gated attention decoder and the

matching layer use a gating mechanism to update the em-

beddings of the new poses and previous tracks and to match

poses to tracks. For example, if there are several very simi-

lar looking persons in a frame, the pose similarity can guide

the update of the appearance embedding. Vice versa, the up-

date will be driven by the appearance embeddings if there is

no spatial proximity between tracks and detections. Our ap-

proach for multi-person pose tracking is illustrated in Fig. 2.

We assume that the human poses are extracted for a new

frame t by a standard multi-person pose estimator where we

utilize the detector from [10] for a fair comparison. Specifi-
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Figure 2. The proposed multi-person pose tracking architecture entails the following steps: a) Given a set of person crops and their

respective keypoint heatmaps at time frame t, we compute pose-conditioned appearance features and feed them into N transformer encoder

stages. This gives an embedding for each detection Et
D , which will be used to measure the similarity to previous tracks. b) We also compute

spatial similarities between tracks and detected persons by means of Intersection over Union (IoU) and Object Keypoint Similarity (OKS),

which we then encode into a pose similarity embedding Et
T→D . This serves as a strong prior for matching. c) The gated attention decoder

takes the embeddings of the previous tracks Et−1
T , the detection embeddings Et

D and the pose similarity embeddings Et
T→D as input and

updates the embeddings. It adaptively weights the spatial prior Et
T→D and the appearance similarity between Et−1

T and Et
D . d) Finally,

the matching stage assigns detections to tracks, removes redundant detections and initializes new tracks.

cally, for a given frame at time t, our network takes as input

the set of estimated bounding boxes Bt
D and poses Pt

D, and

additionally detected keypoint heatmaps Ht
D extracted from

the image crops It
D of detected persons. From the heatmaps

and image crops, an embedding Et
D for re-identification is

computed as described in Section 3.3 (Fig. 2a). To measure

pose and spatial proximity between detections and tracks,

similarities to the bounding boxes Bt−1
T and poses Pt−1

T of

the last frame of each track are computed, which results in

the edge embedding Et
T→D (Fig. 2b) between a track T

and a detection D, which will be described in Section 3.3

as well. We denote Et
T→D as pose similarity embedding.

Given both embeddings Et
D and Et

T→D as well as the track

embeddings Et−1
T that have been estimated in the previous

frame t−1, the proposed Gated Attention Decoder (Fig. 2c)

and the Gated Matching Layer (Fig. 2d) assign the current

detections to previous tracks, update the track embeddings,

and initialize new tracks. Both will be described in the fol-

lowing Section 3.1.

3.1. Gated Attention Decoder

Attention Layer: As baseline method, we employ a trans-

former decoder as proposed in [36] and we propose an

attention-based matching layer as the main extension. As

illustrated in Fig. 3a, the attention layer calculates the simi-

larities A = σ(OA) between the appearance features of the

detections Et
D and tracks Et−1

T , where σ is the row-wise

softmax layer. OA represents the appearance-based similar-

ity logits that are obtained by cross-attention between the

appearance features of the detections Et
D and tracks Et−1

T :

OA =
Et−1

T W ᵀ
Q (Et

DW ᵀ
K)

ᵀ
√
d

, (1)

where WQ and WK are the learned projection weights for

the queries and keys, respectively, and d is the dimension-

ality of the embeddings E∗.
In order to assign detections to tracks based on appear-

ance similarity, we need to allow that none of the detections

is assigned to a track, e.g., if a person has not been detected

or is occluded. Prior to applying the softmax to the attention

logits, i.e., A = σ(OA), we thus add a column of zeros. In

other words, the last column of A indicates if a track does

not match with any detection.

Finally, the attention layer calculates the proposed track

embedding update as follows:

ΔEt
T = (A:,:−1E

t
D)W ᵀ

A, (2)

where A:,:−1 denotes the attention weights without the last

column and WA are the weights of a linear layer.

Gated Attention Layer: Appearance similarities allow to

re-identify an occluded person after some frames, but are

unreliable in case of motion blur or person instances with

similar appearance as it is common in team sport videos.

Pose and spatial similarities, on the other hand, provide a

3191



strong matching prior, but are less reliable in crowded sce-

narios as shown in Fig. 1. While none of them can re-

solve all ambiguities, fusing the similarities automatically

provides a stronger matching prior. Based on these intu-

itions, we propose the gated attention layer. As illustrated in

Fig. 3d, the gated attention layer extends Fig. 3a and incor-

porates pose similarity weights SE=σ (OE) between detec-

tions and tracks. The pose similarity logits OE=Et
T→DW ᵀ

E

are obtained by Et
T→D and the learned weight matrix WE .

In order to assign detections to tracks, appearance-

based similarities SA and pose-based similarities SE are

fused by the α−Gate that weights the contribution of

appearance-based attention weights and the pose-based at-

tention weights by a hyperparameter α, which we evaluate

in our experiments:

A = α · SA + (1− α) · SE . (3)

Similar to the attention layer (Fig. 3a), we add a column of

zeros to SA and SE and obtain ΔEt
T following (2). Intu-

itively, fusing the normalized similarities SA and SE auto-

matically assigns a higher weight to the similarity measure

where the matching confidence of a detection to a track is

higher, resulting in a higher tracking accuracy, as we will

show in the experiments.

Decoder Layer: The decoder layer shown in Fig. 3b then

updates the track Et−1
T embeddings based on the output of

the attention layer. As common for transformer blocks [36],

we use a residual feed-forward network (FNN) as shown in

Fig. 3b. Specifically, we compute

Êt
T = LN(Ẽt

T+FFN(Ẽt
T )), Ẽt

T = LN(Et−1
T +ΔEt

T ),
(4)

where LN denotes layer normalization.

Gated Decoder Layer: The gated decoder layer as shown

in Fig. 3e) additionally employs an α−Gate to weight the

contribution of appearance-based and pose similarity-based

attention logits OA and OE similar to the gated attention

layer. We then apply a feed-forward network FFNE on the

weighted sum of attention logits

Êt
T→D = FFNE (α ·OA + (1− α) ·OE) , (5)

to update the pose similarity embeddings, where FFNE is

a feed-forward network as FFN . Empirically, the gated

decoder layer performs best if α-gating is performed on the

attention logits as we show in the experiments.

Gated Matching Layer: The matching layer (Fig. 3c)

and the gated matching layer (Fig. 3f) comprise a struc-

ture similar to the attention layer and the gated attention

layer, respectively, but differ in two aspects. 1) Both match-

ing layers (Fig. 3c) and (Fig. 3f) do not use the attention

weights to predict a track embedding update and therefore

a) Attention Layer 

Attention Layer

LayerNorm

LayerNorm

b) Decoder Layer c) Matching Head

d) Gated Attention Layer 

Dual-Source Attention

LayerNorm

LayerNorm

e) Gated Decoder Layer 

Dot Product

Sum

f) Gated Matching Head

Softmax

Figure 3. Illustration of our proposed d) Gated Attention layer, e)

Gated Decoder layer and f) Gated Matching layer. The top row

shows a vanilla implementation without gating for each layer: a)

Standard Attention layer with Et
D as keys and Et−1

T as queries.

b) The Decoder layer takes as input the detection embeddings Et
D

and track embeddings Et−1
T and updates the track embeddings Êt

T

using the Attention layer. c) The Matching layer predicts an as-

signment matrix M̂ t
D→T of detections to tracks. The proposed

gated layers use the additional pose similarity embeddings Êt
T→D

as strong prior. The α-Gates fuse the cross-attention matrix SA

between detections and tracks, which measures appearance simi-

larity, and the pose similarity matrix SE , which measures spatial

and pose similarity between detections and tracks.

do not consist of a linear layer after the softmax and α-Gate,

respectively. 2) The attention weights A (i.e. (3)) are used as

assignment matrix M̂ t
D→T to assign detections to tracks, as

we show in Fig. 2d. In the presence of duplicate detections,

this allows to match multiple detections to a single track.

Given the matching matrix M̂ t
D→T , we utilize Hungarian

matching to assign detections to tracks. All the remaining

detections i that have a matching probability m̂i→j > τdup
for any track j are considered as duplicate detections and

are removed. Any other detection will initialize a new track

embedding (Fig. 2d). All tracks that have not been tracked

for τage frames will be removed. We evaluate the impact of

τdup and τage in the experiments.

As shown in Fig. 2, we employ an additional Track Em-
bedding Head after the last decoder layer that predicts the fi-

nal track embeddings and New Track Embedding Head that

generates the embedding for newly initialized tracks. Both

heads consist of two linear layers, where the first layer in-

cludes a LayerNorm [2] and GELU [17].

3.2. Confidence-Guided Track Update

As shown in Fig. 2c, we perform the final update of the

tracks embedding before the final assignment of detections

to tracks is carried out by the matching layer (Fig. 2d). This
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Approach Online AssA FragA DetA HOTA MOTA mAP

CorrTrack [10] � 58.02 57.75 45.48 51.13 63.0 72.3

CorrTrack w. ReID [10] � 60.21 59.66 46.56 52.71 63.8 72.7

Tracktor++ w. Poses [10] � 59.41 58.61 46.30 52.21 63.3 71.4

Tracktor++ w. Corr. [10] � 54.05 52.02 44.67 48.90 61.6 73.6
Ours w/o gating � 44.92 41.96 45.30 44.82 52.4 70.2

Ours w. gating � 62.20 60.93 47.20 53.94 64.1 73.6
CorrTrack [10] � 60.93 60.37 45.48 52.42 63.9 72.3

Table 1. Comparison to multi-person pose tracking methods on the

PoseTrack21 dataset.

is done for two reasons. Firstly, the final assignment might

be wrong and, secondly, we do not want to update the track

embedding when the detection embedding is noisy due to

occlusion or motion blur. To prevent track embeddings from

being updated by noisy or low-confident detections, we em-

ploy a confidence-guided update of the track embeddings.

Let A = {An
:,:−1}Nn=1 be the set of dual-source attention

weights of all N decoder stages without the last column.

As the number of detections per frame is dynamic, we apply

max pooling on the rows of each attention matrix to obtain

the maximum attention score for each track and estimate an

importance weight wj with a linear layer as

Âj = concat{max
i

An
ji|n ∈ [1, N ]} (6)

wj = σ

(∑
n

wn · Ân
j + bn

)
, (7)

where σ is the sigmoid function and Ân
j the maximum at-

tention for track j at layer n. Ultimately, we update the

embedding for each track j as a confidence-guided mov-

ing average by using the importance weight wj following

Et
Tj

= (1−wj) ·Et−1
Tj

+wj · Êt
Tj

. As we will show in our

experiments, the confidence-guided embedding update im-

proves the performance compared to solely relying on the

Track Embedding Head (Fig. 2c) while only adding a neg-

ligible overhead.

3.3. Embeddings Et
D and ET→D

We finally describe how the detection embeddings Et
D

(Fig. 2a) and pose similarity embeddings ET→D (Fig. 2b)

are computed.

Detection Embeddings Et
D: The embeddings that we ex-

tract from each newly detected person need to be robust to

occlusion. Since the keypoint heatmaps Ht
D of the pose es-

timator provide an indicator which keypoints are occluded,

we condition the embedding Et
D on Ht

D. Specifically, we

use a ResNet50 [16] and propose Spatially Adaptive Pose

DEnormalization (SPAPDE) layers, which are inspired by

[26], as an extension. Each SPAPDE layer operates on a set

of keypoint heatmaps Ht
D ∈ R

N×K× 256
s × 128

s along with

the current ResNet features f ∈ R
N×C× 256

s × 128
s extracted

Method AssA DetA LocA HOTA MOTA

TRMOT [38] 54.98 40.91 79.92 46.85 47.2

FairMOT [45] 61.45 47.43 83.16 53.53 56.3

Tracktor++ [3] 65.43 52.71 83.09 58.29 59.5
CorrTrack + ReID [10] 64.19 51.33 82.80 56.95 52.0

Ours 66.89 51.81 82.71 58.42 55.3

Table 2. Comparison to MOT methods on the PoseTrack21-MOT

dataset.

from the corresponding image crops It
D ∈ R

Nx3x256x128,

where N is the number of persons in frame t, s denotes

the respective scaling factor, K denotes the number of key-

points and C denotes the number of feature channels.

In contrast to batch normalization [20], the normalized

input features are scaled and shifted with respect to the key-

point heatmaps. In particular, SPAPDE computes the mod-

ulation parameters β and γ following

γ = conv(a), β = conv(a), a = ReLU(conv(Ht
D)),

(8)

where conv denotes a 3x3-convolution and β, γ ∈
R

N×C× 256
s × 128

s . The image features f are then conditioned

on the heatmaps Ht
D as follows. Let fn,c,y,x be the feature

value for the detected person n and feature channel c at pixel

location (x, y). The SPADPE layer first calculates the mean

μc and standard deviation σc over all persons and pixels of

f and then adaptively de-normalizes the image features by

f̂n,c,y,x = γn,c,y,x · fn,c,y,x − μc

σc
+ βn,c,y,x. (9)

We replace every batch normalization layer within

ResNet50 by SPAPDE layers and train the network follow-

ing [25].

Moreover, we use a vanilla N-stage transformer encoder

[36] without positional encoding to further disentangle the

backbone features of severely occluded persons and noisy

pose predictions and generate a set of encoded person fea-

tures ET
D ∈ RN×256 as shown in Fig. 2a.

Pose Similarity Embeddings ET→D: The pose similar-

ity features Et
T→D (Fig. 2b) used in our gated attention ar-

chitecture are based on similarities between bounding boxes

and poses using Intersection over Union (IoU) and Object

Keypoint Similarity (OKS), respectively. In this work, we

rely on three variants of OKS: the first variant considers

keypoints which are present in both poses. While the first

variant provides a good measure of keypoint alignment, its

expressiveness suffers if two poses only share a small sub-

set of keypoints. For that reason, the remaining two variants

consider all keypoints present in one of the two poses, re-

spectively. In order to deal with motion, we use as in [29]

a warping function φW that warps the last observed pose

of all tracks into the current frame t. The pose similarity

ET→D between tracks and detections is then computed as
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Approach Online Val. Set Detector MOTA mAP

STAF [28] � v1 - 60.9 70.4

T CPN++ [43] � v1 Cascade R-CNN [4] 64.0 80.9

MIPAL [19] � v1 - 65.7 74.6

KeyTrack [32] � v1 HTC [7] 66.6 81.6

CorrTrack [29] � v1 Cascade R-CNN [4] 68.8 79.2

TKMRNet [47] � v1 Faster R-CNN FPN DCN [48] 68.9 76.7

CorrTrack [29] � v1 Cascade R-CNN [4] 69.1 79.2

CorrTrack [29] � v2 Cascade R-CNN [4] 63.6 75.9

LTIVA [13] � v2 - 64.7 71.4

CombDet [37] � v2 ResNet-101 SNIPER [31] 68.7 81.5

LDGNN [42] � v2 Faster R-CNN FPN DCN [48] 69.2 77.9

Ours � v2 Cascade R-CNN [4] 64.5 76.4

Table 3. Comparison to the state of the art on PoseTrack 2018 [1].

Two versions of the validation set have been released containing

74 (v1) and 170 (v2) sequences, respectively.

follows:

ET→D = φE

([
IOU(B̂t−1

T ,Bt
D) || OKS(P̂t−1

T ,Pt
D)

])
.

(10)

Here, P̂t−1
T = φW (Pt−1

T ) and B̂t−1
T = φW (Bt−1

T ) rep-

resent the set of warped track poses and track bounding

boxes, respectively. The operator [· || ·] represents concate-

nation, and φE denotes the pose similarity embedding head,

which consists of three linear layers with LayerNorm [2]

and GELU [17].

3.4. Training Objective

In a first step, we train the re-identification network fol-

lowing [25]: We apply the triplet loss [18] and center loss

[39] after the last pooling layer of ResNet50 and we em-

ploy the cross-entropy loss with label smoothing [35] on

the classification layer. Subsequently, we freeze the re-

identification network and proceed to train our network.

In our approach, the matching layer is trained using a

cross-entropy loss, which is defined as follows:

Lmatch = − 1

ND

∑
i

yi · log(pmij ) + (1− yi) · pmi0, (11)

where ND is the total number of detections, pmi,j represents

the probability of matching the i-th detection to its corre-

sponding ground truth track j, and pmi0 is the probability of

not matching the i-th detection to any track. The variable yi
takes the value 1 if the i-th detection is assigned to a ground

truth track and 0 otherwise.

Since we discard duplicates after the final matching
layer, we generate duplicates during training and allow mul-
tiple detection assignments to a single track. Specifically,
we use detected poses and ground truth poses in the training
process that can share the same person identity. To assign
identities to the detected poses during training, we employ
OKS-based greedy matching to the ground truth poses. We
then utilize a duplicates-aware cross-entropy loss function
that operates on the attention weights of the encoder and

Ldec
attn Encoder Lenc

attn CG-Update HOTA

53.04

� 53.40

� � 53.56

� � � 53.61

� � � � 53.94

Table 4. Impact of several components in our pose tracking

network on the tracking performance. CG-Update denotes the

Confidence-Guided Track Update as discussed in Section 3.1.

decoder layers. The loss function is defined as follows:

Lattn = − 1

NT

∑
j

log(pj), pj =

(∑
i

AjiIi(j)

)
+I�i(j)Aj0.

(12)

NT represents the total number of tracks and pj denotes the

accumulated matching probability for track j, where Aji is

the attention weight of the respective encoder/decoder layer

and Ii(j) is 1 if the identity of the current track j and the

detection i are the same, and 0 otherwise. If none of the

detections matches, i.e., I�i(j), we maximize the no-match

probability Aj0, which is the last column of the attention

matrix as discussed in Section 3.1. In other words, we want

that Aji is large for the correct assignment if and only if a

match exists.

The final objective function is a combination of the

cross-entropy loss function for the matching layer (Lmatch)

and the duplicate-aware cross-entropy loss functions for

each encoder and decoder layer:

L = Lmatch +
∑
k

Lenck
attn +

∑
k

Ldeck
attn , (13)

where Lenck
attn and Ldeck

attn represent the duplicate-aware cross-

entropy loss functions for the k-th encoder and decoder

layer, respectively.

4. Experiments
4.1. Datasets and Evaluation

We evaluate our work on the PoseTrack datasets [1, 10].

Both datasets are large-scale benchmarks for multi-person

pose tracking and contain 593 videos for training and 170

for evaluation. The videos contain various activities and in-

clude highly diverse poses and severe occlusions as shown

in Fig. 1. Since for PoseTrack 2018 the evaluation server is

not anymore available, we only report results on the val-

idation set. Compared to PoseTrack 2018, PoseTrack21

[10] provides more annotations and additional benchmarks

for multi-object tracking (MOT) and person search. We

thus primarily focus on PoseTrack21 [10] in our experi-

ments. For evaluation, we use keypoint HOTA [10]. Key-

point HOTA consists of sub-metrics that measure the detec-
tion accuracy (DetA), the association accuracy (AssA) and
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Re-ID Network Pose-Conditioned HOTA

ResNet50 [25] 53.47

SPAPDE (ResNet50) � 53.94

Table 5. Impact of the proposed SPAPDE network for re-

identification on the overall performance on PoseTrack21.

the fragmentation accuracy (FragA). In addition, we report

results for the keypoint-based MOTA metric [1]. Both met-

rics are evaluated on a keypoint level and then averaged.

For completeness, we report the keypoint detection perfor-

mances in terms of mean average precision (mAP).
We follow common practice [32, 41, 29, 42, 10, 37] and

utilize a multi-frame pose estimation approach to compen-

sate for missed detections due to motion blur and occlusions

during inference. In particular, we utilize keypoint corre-

spondences as in [29, 10]. In the following, we compare

our approach to the state of the art. Implementation details

and additional ablation studies are provided as supplemen-

tary material.

4.2. Comparison with State of the Art

PoseTrack21: We first evaluate our model with and with-

out gating on the PoseTrack21 validation set and compare

the performance to methods proposed in [10] using the

keypoint HOTA [10] and the MOTA metrics [1]. The re-

sults are shown in Table 1. While the performance with-
out gated attention is quite low, our proposed gated atten-

tion transformer consistently outperforms existing methods,

achieving a HOTA score of 53.94 and a MOTA score of

64.1. Compared to CORRTRACK W. REID, our approach

boosts the association accuracy (AssA) and fragmentation

accuracy (FragA) by +1.99% and +1.27% to 62.20 and

60.93, respectively. Additionally, the detection accuracy

(DetA) and the mAP increase to 47.20 and 73.6, respec-

tively. While our approach performs online multi-person

pose tracking, it also outperforms the offline approach Cor-

rTrack.

We further evaluate our approach on the PoseTrack21-

MOT benchmark and compare the performance to the meth-

ods in [10]. As we show in Table 2, our approach con-

sistently outperforms existing methods in terms of AssA

(66.89) and HOTA (58.42). Tracktor++ [3] achieves a

slightly higher DetA and localization accuracy (LocA),

which also results in higher MOTA. While Tracktor++ has

been trained on the annotated bounding boxes for MOT, our

approach has been trained for pose tracking and we sim-

ply generate the bounding boxes from the estimated poses.

Consequently, MOT methods achieve a better MOTA score

due to higher bounding box detection and localization ac-

curacy. As discussed in [24], HOTA is a better metric than

MOTA for MOT.

PoseTrack 2018: The comparison with related works on

α-Gate Source Learnable α AssA FragA DetA HOTA

Attention Logits OA & OE 62.20 60.93 47.20 53.94

Attention Logits OA & OE � 61.80 60.59 47.15 53.74

Attention Weights SA & SE 54.74 50.77 47.14 50.53

Table 6. Impact of using attention weights or attention logits in

the α-Gate (5) of the Gated Attention Transformer on the overall

performance on PoseTrack21.

PoseTrack 2018 is difficult for two reasons: i) The Pose-

Track 2018 dataset is not available anymore and it is no

longer possible to submit results to the official test server;

ii) the validation set was released in two different versions.

The first version (v1) contains 74 whereas the second ver-

sion (v2) contains 170 sequences, respectively. For com-

pleteness, we also include results that have been reported

for v1 in Table 3, but these numbers are not comparable.

The results for CorrTrack [29] show that the version v2 is

much more difficult. Compared to CorrTrack, our method

improves the MOTA score by 0.9% to 64.5. The pose esti-

mation performance increases from 75.9 to 76.4 in terms

of mAP. Our appraoch performs similar to [13] in terms

of MOTA while achieving a higher mAP. CombDet [37]

achieves a higher accuracy, but it uses a stronger multi-

frame person detector and is an offline approach, whereas

our approach is an online approach. LDGNN [42] also uses

a better multi-frame pose estimator, but the code of the pose

estimator is not publicly available.

4.3. Ablation Studies

4.3.1 Evaluation of the Network Architecture

We perform ablation experiments to examine the influence

of each building block of our proposed method. All experi-

ments are conducted on the PoseTrack21 dataset.

Loss Terms, Transformer Encoder and Confidence-
Guided Track Update: We first evaluate the impact of

each component in our tracking model on the keypoint

HOTA score [10] in Table 4. We start with the gated atten-

tion decoder with matching layer as our base model, which

we trained with the matching loss Lmatch (11). Subse-

quently, we incrementally activate several components and

evaluate their impact on the overall performance. Direct

supervision on the gated attention layers using Ldec
attn (12)

increases the overall performance from 53.04 to 53.40 in

terms of HOTA. Using additional transformer encoder lay-

ers (Fig. 2a) boosts the performance to 53.56. Using the loss

Lenc
attn (12) also for the encoder increases HOTA to 53.61.

The impact of the Confidence-Guided Track Update (Sec-

tion 3.2) is shown in the last row. It further increases the

tracking performance by 0.33 to a HOTA score of 53.94.

Pose Similarity Embedding Update: To update the pose

similarity embeddings in the gated decoder layer, we utilize
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Figure 4. Impact of the parameters α, maximum track ages τage and the duplicate confidence threshold τdup on the tracking performance.

a) visualizes the impact of α with τage = 60 and τdup = 0.4. b) shows the performance evaluation with respect to the maximum track age

τage with α = 0.3 and τdup = 0.4. c) illustrates the impact of τdup with α = 0.3 and τage = 60.

an α-Gate to weight the contributions of the appearance-

based and pose similarity-based attention logits (5). While

we evaluate the impact of α in Fig. 4a, Table 6 shows that

learning α does not improve the results. We further evaluate

the tracking performance when the fusion is not done at the

logits, i.e., before the softmax, but after the softmax as in

(2), i.e.,

Êt
T→D = FFNE (A:,:−1) , (14)

where A:,:−1 denotes the attention weights without the last

column (Section 3.1). The last row in Table 6 shows that the

performance largely decreases from a HOTA score of 53.94
to 50.53 in this case.

Re-Identification Model: To evaluate the impact of the

re-identification network, we trained our tracking model

with two different re-identification networks, which we

previously trained on PoseTrack21. We used the re-

identification network from [25] and the proposed pose-

conditioned SPAPDE network (Section 3.3). Table 5 shows

that adding Spatially Adaptive Pose DE-normalization lay-

ers (SPAPDE) to the network increases HOTA from 53.47
to 53.94.

4.3.2 Hyperparameter Evaluation

If not otherwise specified, we use in all experiments α =
0.3, τage = 60 and τdup = 0.4. We finally evaluate the

impact of these parameters on the PoseTrack21 dataset.

Impact of α: We evaluate the impact of α in the α-Gate,

(3) and (5), in Fig. 4a. α weights the contribution of the

appearance-based attention weights and the pose-based at-

tention weights, where α = 1.0 only considers appearance-

based attention weights and, vice versa, α = 0.0 only con-

siders pose similarity-based attention weights. As we can

observe in Fig. 4a, the tracking performance drastically de-

creases for α > 0.4. Appearance-based person features are

very sensitive to persons with similar appearance as it is

common in sports videos, resulting in false associations and

a high degree of identity switches. For 0 ≤ α ≤ 0.3, we can

observe a linear increase in the overall performance, peak-

ing at α = 0.3. This shows that pose-based and appearance-

based similarities complement each other. Pose similarities

provide strong guidance between consecutive frames, while

appearance-based features allow to recover inactive tracks,

e.g., due to occlusion.

Impact of τage: We close tracks that have not been

tracked for more than τage frames and do not include them

for the detection-to-track matching anymore. Fig. 4b shows

that the accuracy saturates at τage = 40.

Impact of τdup: During tracking, we remove unmatched

detections if they have a matching confidence mij > τdup
with an already matched track (Section 3.1). Fig. 4c shows

that the accuracy drops without such a threshold since du-

plicates generate new tracks in this case.

5. Conclusion
We presented a novel gated attention approach for multi-

person pose tracking. Our method employs a duplicate-

aware association and dynamically adapts via gates the im-

pact of pose-based similarities and appearance-based simi-

larities based on the attention probabilities of each similar-

ity measure. We evaluated our approach on the challeng-

ing PoseTrack21 dataset where our approach outperforms

previous works for multi-person pose tracking. On Pose-

Track 2018, the approach is only outperformed by meth-

ods that use a more expensive human pose estimator. We

also evaluated the impact of the proposed Spatially Adap-

tive Pose DEnormalization (SPAPDE) on the pose tracking

performance on PoseTrack21, which positively impacts the

overall tracking performance.

Acknowledgements This work has been funded by the

Deutsche Forschungsgemeinschaft (DFG, German Re-

search Foundation) - GA 1927/8-1.

3196



References
[1] Mykhaylo Andriluka, Umar Iqbal, Anton Milan, Eldar In-

safutdinov, Leonid Pishchulin, Juergen Gall, and Bernt

Schiele. PoseTrack: A Benchmark for Human Pose Esti-

mation and Tracking. In CVPR, 2018.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.

Layer Normalization, 2016.

[3] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixé.
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