
Controllable Inversion of Black-Box Face Recognition Models via Diffusion
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Abstract

Face recognition models embed a face image into a low-
dimensional identity vector containing abstract encodings
of identity-specific facial features that allow individuals to
be distinguished from one another. We tackle the challeng-
ing task of inverting the latent space of pre-trained face
recognition models without full model access (i.e. black-box

setting). A variety of methods have been proposed in liter-
ature for this task, but they have serious shortcomings such
as a lack of realistic outputs and strong requirements for
the data set and accessibility of the face recognition model.
By analyzing the black-box inversion problem, we show that
the conditional diffusion model loss naturally emerges and
that we can effectively sample from the inverse distribution
even without an identity-specific loss. Our method, named
identity denoising diffusion probabilistic model (ID3PM),
leverages the stochastic nature of the denoising diffusion
process to produce high-quality, identity-preserving face
images with various backgrounds, lighting, poses, and ex-
pressions. We demonstrate state-of-the-art performance in
terms of identity preservation and diversity both qualita-
tively and quantitatively, and our method is the first black-
box face recognition model inversion method that offers in-
tuitive control over the generation process.

1. Introduction
Face recognition (FR) systems are omnipresent. Their

applications range from classical use cases such as access

control to newer ones such as tagging a picture by identity

or controlling the output of generative models [31, 2, 47].

The goal of an FR method f is to obtain embeddings y of

face images x such that the embeddings of images of the

same person are closer to each other than those of images

of other people. We refer to this embedding y as the identity
vector or ID vector. In this paper, we propose a technique
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Figure 1: Overview. Our method inverts a pre-trained face

recognition model (here InsightFace [13]) to produce high-

quality identity-preserving images. It also provides intuitive

control over the image generation process.

to sample from p(x|y), i.e. to produce realistic face images

from an ID vector.

By design, the many-to-one mapping of FR methods as-

signs multiple images of a given identity to the same ID

vector. The inverse one-to-many problem, i.e. producing

a high-dimensional image from a low-dimensional ID vec-

tor, is extremely challenging. Previous methods often rely

on the gradient of FR models either directly [74] or use it

during training in the form of a loss function [9, 47]. This

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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gradient or information about the model’s architecture and

weights is often not available, e.g. if using an API of a

proprietary model. We therefore focus on the more gener-

ally applicable black-box setting, where only the resulting

ID vectors are available. In addition to being more gen-

eral, the black-box setting simplifies the analysis of differ-

ent FR models as explored in the supplementary material.

Another benefit is that we can easily extend our condition-

ing mechanism to include information from different, even

non-differentiable, sources (e.g. labels, biological signals).

We propose the identity denoising diffusion probabilistic

model (ID3PM), the first method that uses a diffusion model

(DM) to invert the latent space of an FR model, i.e. to gen-

erate identity-preserving face images conditioned solely on

black-box ID vectors as seen in Fig. 1. We show mathemat-

ically that we can effectively invert a model f even without

access to its gradients by using a conditional DM. This al-

lows us to train our method with an easy-to-obtain data set

of pairs of images and corresponding ID vectors (easily ex-

tracting from images) without an identity-specific loss term.

Our method obtains state-of-the-art performance for the

inversion task and is, to the best of our knowledge, the first

black-box FR model inversion method with control over the

generation process as seen in Fig. 1. Specifically, we can

control (1) the diversity among samples generated from the

same ID vector via the classifier-free guidance scale, (2)

identity-specific features (e.g. age) via smooth transitions in

the ID vector latent space, and (3) identity-agnostic features

(e.g. pose) via explicit attribute conditioning.

To summarize, our main contributions are:

1. Showing that the conditional diffusion model loss nat-

urally emerges from an analysis of the black-box in-

version problem.

2. Applying the resulting framework to invert face recog-

nition models without identity-specific loss functions.

3. Demonstrating state-of-the-art performance in gener-

ating diverse, identity-preserving face images from

black-box ID vectors.

4. Providing control mechanisms for the face recognition

model inversion task.

2. Related work
2.1. Face recognition

While early deep learning works such as DeepFace [64]

and VGG-Face [48] treated FR as a classification problem

(one class per identity), FaceNet [59] introduced the triplet

loss, a distance-based loss function. The trend then shifted

towards margin-based softmax methods [37, 67, 66, 14] that

incorporate a margin penalty and perform sample-to-class

rather than sample-to-sample comparisons. More recently,

some FR methods tackle specific challenges such as robust-

ness to different quality levels [33] and occlusions [36, 49].

2.2. Inversion of face recognition models

Similar to gradient-based feature visualization tech-

niques [61, 38, 72, 44], Zhmoginov and Sandler [74] per-

form gradient ascent steps using the gradient of a pre-

trained FR model to generate images that approach the same

ID vector as a target image. To avoid generating adversarial

examples, strong image priors such as a total-variation loss

and a guiding image are necessary. Cole et al. [9] trans-

form the one-to-many task into a one-to-one task by map-

ping features of an FR model to frontal, neutral-expression

images, which requires a difficult-to-obtain data set. Nitzan

et al. [47] map the identity features and attributes of images

into the style space of a pre-trained StyleGAN [28] to pro-

duce compelling results. However, their method struggles

to encode real images since it is trained exclusively with im-

ages generated by StyleGAN. Furthermore, all of the above

methods require white-box access to (the gradient of) an FR

model, which is not always available in practice.

Many black-box methods view the problem from a secu-

rity lens, focusing on generating images that deceive an FR

model rather than appearing realistic. Early attempts using

linear [43] or radial basis function models [42] lacked gen-

erative capacity to produce realistic images. NbNet [40] in-

troduces a neighborly de-convolutional neural network that

can generate images with a reasonable resemblance to a

given image, but it has line artifacts and relies on a huge

data set augmented with a GAN. On the contrary, Razzhi-

gaev et al. [52] propose a data-set-free method using Gaus-

sian blobs (which we call “Gaussian sampling” for simplic-

ity), but they need thousands of FR model queries (10-15
minutes) per image, and their results lack realism. Yang et
al. [70] rely on background knowledge to invert a model

and only produce blurry images in the black-box setting.

Vec2Face [16] uses a bijection metric and knowledge dis-

tillation from a black-box FR model to produce realistic

identity-preserving faces; however, it requires a large data

set with multiple images per identity (Casia-WebFace [71])

during training. The method by Vendrow and Vendrow [65]

(which we call “StyleGAN search”) searches the latent

space of a pre-trained StyleGAN2 [29] to find images with

an ID vector close to the target. While their search strategy

generates highly realistic images, it needs hundreds of FR

model queries (5-10 minutes) per image and often lands in

local minima, resulting in completely different identities.

Table 1 compares attributes of state-of-the-art FR model

inversion methods. Ours is the only one that generates di-

verse, realistic, identity-preserving images in the black-box

setting, can be trained with easy-to-obtain data, and only

requires one FR model query during inference.

2.3. Diffusion models for inverse problems

A number of approaches for solving inverse problems in

a more general setting using conditional [57, 55] and uncon-
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Method Black-box FR model queries (inference) Training data set Realistic 1 Mapping

Zhmoginov and Sandler [74] No ∼ 1000 2 1 2 Any images No One-to-one

Cole et al. [9] No 1 Frontalized images Yes One-to-one

Nitzan et al. [47] No 1 Any images Yes One-to-many

NbNet [40] Yes 1 Huge data set No One-to-one

Gaussian sampling [52] Yes 240000 Data-set-free No One-to-many

Yang et al. [70] Yes 1 Any images No One-to-one

Vec2Face [16] Yes 1 Multiple images per identity Yes One-to-many

StyleGAN search [65] Yes 400 Data-set-free Yes One-to-many

ID3PM (Ours) Yes 1 Any images Yes One-to-many

Table 1: Comparison of state-of-the-art face recognition (FR) model inversion methods. Our method does not have any of the

common shortcomings, producing diverse, realistic images from black-box ID vectors with few requirements for the training

data set or accessibility of the FR model during inference. 1 By visual inspection of the results of the respective papers. 2 The

authors propose two methods: one taking hundreds or thousands of queries and the second one doing it in one shot.

ditional [26, 30, 62, 6, 7, 20, 5, 8, 3, 41, 63] exist; however,

they mostly focus on image-to-image tasks such as inpaint-

ing and super-resolution whereas we focus on a vector-to-

image task. The method by Graikos et al. [20] can gen-

erate images from low-dimensional, nonlinear constraints

such as attributes, but it requires the gradient of the attribute

classifier during inference whereas ours does not. Thus,

conditional diffusion models with vectors as additional in-

put [15, 51, 53, 56], while not directly geared towards in-

version, are conceptually more similar to our approach.

3. Motivation

3.1. Inverse problems

In a system under study, we often have a forward prob-
lem or function f that corresponds to a set of observations

y ∼ Y . The function f has input arguments x and a set of

parameters θ, such that f(x;θ) = y. An inverse problem
seeks to reverse this process and make inferences about the

values of x or θ given the observations y. For the appli-

cation explored in this work, f is a face recognition model

that takes an image x as input and produces an ID vector y.

When the function f is not bijective, no inverse exists in

the traditional mathematical sense. However, it is possible

to generalize our concept of what an inverse is to accommo-

date the problem of model inversion, namely by considering

an inverse to be the set of pre-images of the function f that

map ε-close to the target y. For bijective f , this corresponds

to the traditional inverse for ε = 0.

3.1.1 Model inversion with model access

One way to handle the model-inversion problem when f is

not bijective is to treat it pointwise, defining a loss, such as

L =
1

2
‖y − f(x)‖2, (1)

and minimizing it via gradient descent on x from some

starting point x0 according to

Δxt = −∇xL =

(
∂f

∂x

)�
(y − f(x)) . (2)

In common cases where the inverse problem is one-to-

many, we can take a statistical approach. Here we want to

sample from p(x|y), which is equivalent to drawing from

the pre-image set that defines the inverse f−1(y).
However, if we assume a Gaussian observation model

p(y|x) = N (y; f(x), σ2I) ∝ exp

(
− L
σ2

)
, (3)

where the last term follows from (1), then we can rewrite

equation (2) as Δxt ∝ σ2∇x log p(y|xt).
This shows that traditional model inversion via gra-

dient descent performs a type of deterministic sampling

from p(y|x)—and not the distribution we want, p(x|y)—
by pushing toward modes of p(y|x) close to the initializa-

tion point x0, regardless of whether it possesses the desired

characteristics of the data p(x). This can lead to results,

such as adversarial examples [19], that, while technically

satisfying the mathematical criteria of inversion, do not ap-

pear to come from p(x).
Various types of regularization exist to attempt to avoid

this issue, which are most often ad hoc methods geared to-

ward the specific problem at hand [74, 39, 10, 69]. A more

general approach is to introduce regularization terms pro-

portional to the (Stein) score, ∇x log p(x), since

∇x log p(x|y) = ∇x log p(y|x) +∇x log p(x)

provides the conditional score needed to sample from

p(x|y), the distribution we are actually interested in.

Previous work has shown that diffusion models (DMs)

effectively learn the score ∇x log p(x), which allows them

to be used alongside model gradients to guide sampling [63,
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Figure 2: Method architecture. Given an image of a source identity, the identity conditioning module extracts the ID vector

with a black-box, pre-trained face recognition network. This is projected with a fully connected layer and added to the time

step embedding which is injected into the residual blocks of a diffusion model (DM). Starting with Gaussian noise xT , the

DM iteratively denoises the image to finally obtain the output image x0 in 64×64 resolution. Lastly, the image is upsampled

to a resolution of 256 × 256 using an unconditional super-resolution DM. The optional attribute conditioning module helps

disentangle features and allows intuitive control over attributes such as the pose. Gray components are frozen during training.

23, 46, 15, 27]. When those models are classifiers, the pro-

cedure is known as classifier guidance [15]. However, this

imposes an additional computational burden on sampling

and also requires that the model f be differentiable.

3.1.2 Model inversion without full model access

In the case we focus on in this work, we assume to have

access only to the values of the function f via some oracle

or a lookup table of (x,y) pairs but not its gradient ∇f . In

this case, also referred to as black-box setting, we may wish

to train a function gψ to learn the inverse by minimizing

J = ‖x− gψ(y)‖2 (4)

across all observed {(x,y)}. Recalling that y = f(x), we

have essentially described an encoder-decoder setup with

the encoder frozen and only the decoder being trained,

which requires no gradients from the “encoder” f .

If we consider perturbed data x̃ = x + ε, where ε ∼
N (0, σ2

t I). Then (4) is equivalent to

J̃ = ‖(x̃− x)− (x̃− gψ(y))‖2
= ‖ε− εθ(x̃,y, t)‖2,

(5)

and we are now training a conditional model εθ to learn

the noise added to x instead of a model g to reconstruct x.

This new task is exactly the one facing conditional diffusion

models (Section 4.1).

Although we cannot force the model to leverage the con-

ditioning on y or t, if it is to successfully minimize the loss

J̃ , it should learn a function proportional to the conditional

score. That is because, by Tweedie’s formula [17, 32],

E[x|x̃,y] = x̃+ σ2
t∇x̃ log p(x̃|y)

≈ x̃− εθ(x̃,y, t).
(6)

As a result, we can effectively sample from the “inverse

distribution” p(x̃|y) via εθ(x̃,y, t) using Langevin dynam-

ics [1, 68] without having access to the gradients of the

model f or any other model-specific loss terms.

Intuitively, during training, especially in early denoising

steps, it is difficult for the DM to both denoise an image to

get a realistic face and match the specific training image.

The ID vector contains information (e.g. face shape) that

the DM is incentivized to use (→ lower loss) to get closer

to the training image. During inference, the random seed

determines identity-agnostic features (→ many results), and

the ID conditioning pushes the DM to generate an image

that resembles the target identity.

4. Method
Motivated by the results from Sec. 3, we adopt a condi-

tional diffusion model (DM) for the task of inverting a face

recognition (FR) model. Since conditional DMs have in-

herent advantages for one-to-many and inversion tasks, this

results in a minimal problem formulation compared to task-

specific methods that require complicated supervision [16]

or regularization [74] signals. The overall architecture of

our method is visualized in Fig. 2.

4.1. Diffusion model formulation

We build up on the diffusion model proposed by Dhari-

wal and Nichol [15]. Given a sample x0 from the image dis-
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tribution, a sequence x1,x2, ...,xT of noisy images is pro-

duced by progressively adding Gaussian noise according to

a variance schedule. At the final time step, xT is assumed to

be pure Gaussian noise: N (0, I). A neural network is then

trained to reverse this diffusion process in order to predict

xt−1 from the noisy image xt and the time step t. To sample

a new image, we sample xT ∼ N (0, I) and iteratively de-

noise it, producing a sequence xT ,xT−1, . . . ,x1,x0. The

final image, x0, should resemble the training data.

As [15], we assume that we can model pθ(xt−1|xt)
as a Gaussian N (xt−1;μθ(xt, t),Σθ(xt, t)) whose mean

μθ(xt, t) can be calculated as a function of εθ(xt, t), the

(unscaled) noise component of xt. We extend this by con-

ditioning on the ID vector y and thus predict εθ(xt,y, t).
Extending [46] to the conditional case, we predict the noise

εθ(xt,y, t) and the variance Σθ(xt,y, t) from the image

xt, the ID vector y, and the time step t, using the objective

Lsimple = Et,x0,y,ε[||ε− εθ(xt,y, t)||2]. (7)

For more details, refer to the diffusion model works [23,

46, 15]. Note that this objective is identical to the one the-

oretically derived in (5). While some recent work has con-

sidered the application of diffusion models to inverse prob-

lems, they typically assume p(y|x) is known [26, 30, 62, 6,

7, 20, 5, 8, 3, 41, 63], while we make no such assumption.

Following Ramesh et al. [51], we adapt classifier-free

guidance [24] by setting the ID vector to the 0-vector

with 10% probability during training (unconditional set-

ting). During inference, we sample from both settings, and

the model prediction ε̂θ becomes

ε̂θ(xt,y, t) = εθ(xt,0, t) + s[εθ(xt,y, t)− εθ(xt,0, t)],
(8)

where s ≥ 1 is the guidance scale. Higher guidance scales

cause the generation process to consider the identity condi-

tioning more.

4.2. Architecture

The model is a U-net [54] that takes the image xt, the

ID vector y, and the time step t as input. The U-net archi-

tecture is adapted from [15] and is described in detail in the

supplementary material. To condition the diffusion model

on the identity, we add an identity embedding to the resid-

ual connections of the ResNet blocks, as commonly done

for class embeddings [15] and the CLIP [50] embedding

in text-to-image generation methods [51, 56]. The identity

embedding is obtained by projecting the ID vector through

a learnable fully connected layer such that it has the same

size as the time step embedding and can be added to it.

4.3. Controllability

Due to its robustness and ability to pick a mode by set-

ting the random seed during image generation, our method

permits smooth interpolations and analyses in the ID vec-

tor latent space unlike other works that invert FR models.

For example, we can smoothly interpolate between differ-

ent identities as visualized in Fig. 1. Furthermore, we can

find meaningful directions in the latent spaces. Since the

directions extracted automatically using principal compo-

nent analysis (PCA) are generally difficult to interpret be-

yond the first dimension (see supplementary material), we

calculate custom directions using publicly available meta-

data [11] for the FFHQ data set. For binary features (e.g.

glasses), we define the custom direction vector as the differ-

ence between the mean ID vectors of the two groups. For

continuous features (e.g. age), we map to the binary case by

considering ID vectors with feature values below the 10th

percentile and values above the 90th percentile for the two

groups respectively. Examples of traveling along meaning-

ful ID vector directions can be seen in Fig. 1.

To better disentangle identity-specific and identity-

agnostic information and obtain additional interpretable

control, we can optionally extend our method by also condi-

tioning the DM on an attribute vector as done for the ID vec-

tor. In practice, we recommend using only identity-agnostic

attributes (referred to as set 1) along with the identity. In

the supplementary material, we also show attribute sets that

overlap more with identity (sets 2 & 3) for completeness.

4.4. Implementation details

As data set, we use FFHQ [28] and split it into 69000 im-

ages for training and 1000 for testing. As we can only show

images of individuals with written consent (see Sec. 7), we

use a proprietary data set of faces for the qualitative results

in this paper. To condition our model, we use ID vectors

from a PyTorch FaceNet implementation [59, 18] or the de-

fault InsightFace method [13]. To evaluate the generated

images and thereby match the verification accuracy on real

images shown in Vec2Face [16] as closely as possible, we

use the official PyTorch ArcFace implementation [14, 12]

and a TensorFlow FaceNet implementation [59, 58]. A de-

tailed description of the remaining implementation details

and ID vectors is in the supplementary material.

5. Experiments and results
5.1. Comparison to state-of-the-art methods

We mainly compare our model with the three methods

that generate faces from black-box features whose code is

available online: NbNet [40] (“vgg-percept-nbnetb” param-

eters), Gaussian sampling [52], and StyleGAN search [65].

Figure 3 compares the outputs of our method with those

of current state-of-the-art methods. While capturing the

identity of the input face well in some cases, NbNet [40]

and Gaussian sampling [52] both fail to produce realistic

faces. In contrast, StyleGAN search [65] always generates
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high-quality images, but they are not always faithful to the

original identity, sometimes failing completely as seen in

the last row. Our method is the only method that produces

high-quality, realistic images that consistently resemble the

original identity. Our observations are supported by the user

study in the supplementary material.

Original

image
NbNet [40]

Gaussian

sampling [52]

StyleGAN

search [65]

ID3PM

(Ours)

Figure 3: Qualitative evaluation with state-of-the-art meth-

ods. The generated images of our method (with Insight-

Face [13] ID vectors) look realistic and resemble the iden-

tity of the original image more closely than other methods.

Note that the second-best performing method, StyleGAN

search [65], often fails completely as seen in the last row.

For the quantitative evaluation of the identity preserva-

tion, we generate one image from each ID vector of all 1000

images of the FFHQ [28] test set for each method. We then

calculate the distances according to the ArcFace [14, 12]

and FaceNet [59, 58] face recognition methods for the 1000
respective pairs. The resulting distance distributions are

plotted in Fig. 4. Note that StyleGAN search [65] opti-

mizes the FaceNet distance during the image generation and

thus performs well when evaluated with FaceNet but poorly

when evaluated with ArcFace. The opposite effect can be

seen for Gaussian sampling, which optimizes ArcFace dur-

ing image generation. Despite not optimizing the ID vector

distance directly (neither during training nor inference), our

method outperforms all other methods, producing images

that are closer to the original images’ identities.

To further evaluate the identity preservation and to com-

pare to Vec2Face [16] despite their code not being avail-

able online, we follow the procedure used in Vec2Face [16].

0.2 0.3 0.4 0.5

ArcFace distance

D
en

si
ty

0.1 0.2 0.3 0.4 0.5 0.6

FaceNet distance

D
en

si
ty

NbNet [40]

Gaussian sampling [52]

StyleGAN search [65]

ID3PM (Ours, FaceNet [59, 18])

ID3PM (Ours, InsightFace [13])

Figure 4: Probability density functions of the ArcFace [14,

12] and FaceNet [59, 58] distances (lower is better) of 1000
FFHQ [28] test images and their respective reconstructions.

Specifically, we use the official validation protocols of the

LFW [25], AgeDB-30 [45], and CFP-FP [60] data sets and

replace the first image in each positive pair with the im-

age reconstructed from its ID vector, while keeping the sec-

ond image as the real reference face. The face matching

accuracies for ArcFace [14, 12] and FaceNet [59, 58] are

reported in Tab. 2. Our method outperforms NbNet [40],

Gaussian sampling [52], and StyleGAN search [65] in al-

most all tested configurations and performs on-par with or

better than Vec2Face [16]. Note that our method has fewer

requirements for the training data set (70000 images vs.

490000 images grouped into 10000 classes) and produces

visually superior results compared to Vec2Face [16], as con-

firmed in the user study in the supplementary material.

To evaluate the diversity of the generated results, we gen-

erate 100 images for the first 50 identities of the FFHQ [28]

test set. Motivated by the diversity evaluation common in

unpaired image-to-image translation literature [4, 35], we

calculate the mean pairwise LPIPS [73] distances among

all images of the same identity. We further calculate

the mean pairwise pose and expressions extracted using

3DDFA V2 [21]. We additionally calculate the mean iden-

tity vector distances according to ArcFace [14, 12] and

FaceNet [59, 58] to measure the identity preservation. We

report these values in Tab. 3.

Since NbNet [40] is a one-to-one method and Gaus-

sian sampling [52] produces faces that often fail to be de-

tected by 3DDFA V2 [21], we only compare with Style-

GAN search [65]. In our default configuration (marked with
∗ in Tab. 3), we obtain similar diversity scores as Style-
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Method
LFW AgeDB-30 CFP-FP

ArcFace ↑ FaceNet ↑ ArcFace ↑ FaceNet ↑ ArcFace ↑ FaceNet ↑
Real images 99.83% 99.65% 98.23% 91.33% 98.86% 96.43%

NbNet [40] 87.32% 92.48% 81.83% 82.25% 87.36% 89.89%

Gaussian sampling [52] 89.10% 75.07% 80.43% 63.42% 61.39% 55.26%

StyleGAN search [65] 82.43% 95.45% 72.70% 85.22% 80.83% 92.54%

Vec2Face [16] 1 99.13% 98.05% 93.53% 89.80% 89.03% 87.19%

ID3PM (Ours, FaceNet [59, 18]) 97.65% 98.98% 88.22% 88.00% 94.47% 95.23%
ID3PM (Ours, InsightFace [13]) 99.20% 96.02% 94.53% 79.15% 96.13% 87.43%

Table 2: Quantitative evaluation of the identity preservation with state-of-the-art methods. The scores depict the matching

accuracy when replacing one image of each positive pair with the image generated from its ID vector for the protocols of the

LFW [25], AgeDB-30 [45], and CFP-FP [60] data sets. The best performing method per column is marked in bold. 1 Values

taken from their paper.

GAN search [65], while preserving the identity much better.

Note that the diversity scores are slightly skewed in favor of

methods whose generated images do not match the identity

closely since higher variations in the identity also lead to

more diversity in the LPIPS [73] features.

5.2. Controllability

5.2.1 Guidance scale

The classifier-free guidance scale offers control over the

trade-off between the fidelity and diversity of the generated

results. As seen in Fig. 5, by increasing the guidance, the

generated faces converge to the same identity, resemble the

original face more closely, and contain fewer artifacts. At

the same time, higher guidance values reduce the diversity

of identity-agnostic features such as the background and ex-

pressions and also increase contrast and saturation.

s 1.0 2.0 3.0 4.0 5.0

Figure 5: Effect of the guidance scale on the generated im-

ages. For the (InsightFace [13]) ID vector extracted from

the image on the left, we generate images for four seeds at

guidance scales s ranging from 1.0 to 5.0.

To measure this effect quantitatively, we perform the

same evaluation as in the previous section and report the re-

sults in Tab. 3. As the guidance scale increases, the identity

preservation improves as indicated by the decreasing iden-

tity distances, but the diversity in terms of poses, expres-

sions, and LPIPS [73] features decreases. In practice, we

choose a guidance scale of 2.0 for all experiments unless

stated otherwise because that appears to be the best com-

promise between image quality and diversity. In the sup-

plementary material, we further show FID [22] as well as

precision and recall [34] values that measure how well the

image distribution is preserved as the guidance scale varies.

5.2.2 Identity vector latent space

As described in Sec. 4, we can find custom directions in the

ID vector latent space that enable us to smoothly interpo-

late identities as well as change features such as the age or

hair color as seen in Fig. 1 and in the supplementary mate-

rial. Note that we refer to these features as identity-specific
because they exist in the ID vector latent space. In theory,

this space should not contain any identity-agnostic infor-

mation such as the pose. In practice, however, some FR

methods inadvertently do extract this information. This is

shown in great detail in the supplementary material, where

we show an interesting application of our method to analyze

pre-trained face recognition methods.

5.2.3 Attribute conditioning

By additionally conditioning our method on attributes, we

can disentangle identity-specific and identity-agnostic fea-

tures. As seen in Fig. 6, the additional attribute conditioning

allows us to recover more of the original data distribution in

terms of head poses and expressions whereas a model con-

ditioned only on the ID vector is more likely to overfit and

learn biases from the training data set. This is also shown

in Tab. 3, where the diversity increases with attribute condi-

tioning at the expense of worse identity preservation com-
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Method Setting
Diversity Identity distance

Pose ↑ Expression ↑ LPIPS ↑ ArcFace ↓ FaceNet ↓
StyleGAN search [65] - 12.57 1.57 0.317 0.417 0.215

ID3PM (Ours)

Guidance scale = 1.0 17.36 1.35 0.315 0.291 0.234
1.5 16.69 1.18 0.301 0.260 0.211
2.0 ∗ 16.24 1.10 0.290 0.247 0.203
2.5 15.88 1.05 0.282 0.242 0.201
3.0 15.55 1.01 0.274 0.239 0.200

ID3PM (Ours) Attribute conditioning 16.93 1.45 0.306 0.302 0.252

Table 3: Quantitative evaluation of the diversity and identity distances of 100 generated images for 50 identities with Style-

GAN search [65], different guidance scales, and attribute conditioning (set 1). InsightFace [13] ID vectors are used for our

methods in this experiment. The best performing method per column is marked in bold. ∗ Indicates the default setting used

in this paper and also for the run with attribute conditioning.

pared to the base configuration. The attribute condition-

ing also enables intuitive control over the generated images

by simply selecting the desired attribute values as shown in

Fig. 1 and in the supplementary material.

ID

ID + Set 1

Figure 6: Attribute conditioning diversity. Through addi-

tional attribute conditioning, we can disentangle identity-

specific and identity-agnostic features. As a result, we ob-

tain more diverse results when using both (InsightFace [13])

ID vector and attribute vector conditioning (set 1) compared

to when only using ID vector conditioning.

6. Limitations
Our method outputs images at a relatively low resolu-

tion of 64 × 64. While this can be upsampled using super-

resolution models, some fine identity-specific details such

as moles cannot be modeled currently (but this information

might not even be stored in the ID vector). Our method

also has relatively long inference times (15 seconds per

image when using batches of 16 images on one NVIDIA

RTX 3090 GPU) in the default setting, but this can be re-

duced to less than one second per image when using 10
respacing steps at a slight decrease in quality as shown in

the supplementary material. Our method also occasionally

has small image generation artifacts, but the above aspects

are expected to improve with future advancements in diffu-

sion models. Lastly, our model inherits the biases of both

the face recognition model and the training data set. This

can manifest as either accessorizing images corresponding

to certain demographic factors (e.g. via make-up, clothing)

or losing identity fidelity for underrepresented groups as

shown in the supplementary material. This suggests an ad-

ditional application of our work to the study of systematic

biases in otherwise black-box systems.

7. Ethical concerns
All individuals portrayed in this paper provided informed

consent to use their images as test images. This was not

possible for the images from the FFHQ [28], LFW [25],

AgeDB-30 [45], and CFP-FP [60] data sets. Therefore, we

do not show them in the paper and cannot provide qualita-

tive comparisons to Vec2Face [16] (code not available).

We recognize the potential for misuse of any method that

creates realistic imagery of human beings, especially when

the images are made to correspond to specific individuals.

We condemn such misuse and support ongoing research

into the identification of artificially manipulated data.

8. Conclusion
We propose a method to generate high-quality identity-

preserving face images by injecting black-box, low-

dimensional embeddings of a face into the residual blocks

of a diffusion model. We mathematically reason and empiri-

cally show that our method produces images close to the tar-

get identity despite the absence of any identity-specific loss

terms. Our method obtains state-of-the-art performance on

identity preservation and output diversity, as demonstrated

qualitatively and quantitatively. We further showcase ad-

vantages of our approach in providing control over the gen-

eration process. We thus provide a useful tool to create data

sets with user-defined variations in identities and attributes

as well as to analyze the latent spaces of face recognition

methods, motivating more research in this direction.
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