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Figure 1: Music-to-Codes (M2C). We introduce music codes, a novel music representation for generating music-controlled

dance. Moreover, we propose the M2C to formulate music codes and the SM-GPT network to predict dance motions using

music codes. Our evaluation result shows that designing the network around music codes improves dance motion quality.

Abstract

Generating 3D dance motions that are synchronized with
music is a difficult task, as it involves modelling the com-
plex interplay between musical rhythms and human body
movements. Most existing approaches focus on improving
the dance generation network, often overlooking the impor-
tance of the music feature processing stage which plays a
crucial role in dance motion generation. In this paper, we
propose music codes, a better latent representation for mu-
sic features using discrete variables. We present a compre-
hensive analysis of the music features and propose a differ-
ent normalization procedure to address the scale imbalance
issue within music features. We also introduce the Music-
to-Codes (M2C) network, a VQ-VAE inspired network as a
music code extractor to replace existing music feature pro-
cessors. To evaluate the effectiveness of our approach, we
combine M2C with Stochastic Motion GPT (SM-GPT), our
modification of a recent SoTA dance generation method.
Our extensive evaluation and ablation study demonstrates
that our dance generation pipeline (using M2C and SM-
GPT) significantly improves the dance generation result
both qualitatively and quantitatively across all evaluation
metrics. Our work opens up new possibilities for exploring
the relationship between music and dance, contributing to
more effective music-conditioned 3D dance generation.

1. Introduction

Throughout human history, dancing has always been a

part of human life. The oldest evidence of dancing as a

part of human culture originates in more than thousands of

years [32]. Dancing itself can be defined as a human ex-

pression of their creativity by manipulating the human body

in time and space [19]. Fast forward to the present, danc-

ing still plays a part in our daily life. Particularly, dancing

is now an integral part of pop culture and is even more so

due to the rise of video-sharing apps such as TikTok and

YouTube which houses countless dancing videos accompa-

nied by catchy pop music.

In today’s world, the latest advancement in computer

graphics enables people to indulge in computer graphics-

aided entertainment, including AR/VR, video games, vir-

tual worlds, social networks, and computer-generated

movies. While these services offer a wide range of enter-

tainment choices, incorporating dance into them, especially

those based on 3D computer graphics, is challenging. It

often involves an intricate human motion capture system

and a professional dancer to perform the movements. With

the ever-growing media consumption rates [6] and the ever-

changing internet trends, maintaining the quality of dance

motions in these services becomes a challenge.

Music-conditioned 3D dance generation is a challeng-

ing computer vision research that involves generating dance

motion from a short dance sequence and music input. Par-
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ticularly, this task is complicated due to human kinematic

constraints and requires artistic creativity. In fact, chore-

ographing a high-quality dance motion to accompany a

piece of music is a learned and trained skill usually done

by a professional choreographer. Prior works approached

this problem as a sequence generation task by using a deep

multi-modal model to learn the interdependence between

the two inputs data modality (i.e., music data and condi-

tioning dance motion) and the supposedly subsequent dance

motion [1, 25, 28, 29, 30, 46]. Each of these methods pro-

poses a distinct dance generation method, employing a del-

icately designed deep neural network. However, a common

trait among prior methods is their failure to explicitly lever-

age on the hidden information contained in the input music

feature through their network design.

In this paper, we propose a concise music representa-

tion designed to benefit the deep dance generation model by

capturing essential features within the music input (Figure

1). We label our proposed feature representation as music
codes, which is a pair of discrete latent codes. In addition,

we present our findings regarding the necessity and benefit

of replacing music features with music codes. We provide

supporting evidence showing the massive scale imbalance

of commonly used extracted music features mel-frequency
cepstral coefficients (MFCC).

We propose a Music-to-Codes network for music code

formulation given a music feature sequence (inspired by

VQ-VAE [51] and 3D Pose VQ-VAE [46]). We design

M2C as a discrete autoencoder and train it before using

it to formulate music codes for dance generation. Subse-

quently, we combine M2C’s feature extractor with a mod-

ified SoTA deep dance generation network, Li et al.’s Mo-

tion GPT [46], for generating dance movements. The over-

all combined structure of the M2C and SM-GPT network is

illustrated in Figure 2. The modification includes ensuring

compatibility with music codes and incorporating a stochas-

tic sampling module for increasing diversity. Despite its

straightforward design, the experiment result demonstrates

that M2C successfully formulates insightful discrete music

codes that enhances the generated dance movements qual-

ity. To summarize, our contributions are fourfold.

• We present a comprehensive analysis of the fundamen-

tal aspects of music features, specifically highlighting

their application in music-conditioned dance genera-

tion.

• We propose the M2C network to formulate our novel

music code. Despite its simple design, M2C has

demonstrated remarkable proficiency in formulating

music codes, as evidenced by experimental results.

• To ensure compatibility with music codes, we have

made minor modifications to a prior SoTA dance pre-

dictor. Additionally, we incorporated a stochastic sam-

pling module to increase the generated dance move-

ments diversity.

• We perform extensive evaluation to validate our pro-

posed music codes, the M2C network, and the dance

generation pipeline.

2. Related Works
Motion Generation and Music-Conditioned Dance Gen-
eration. Extensive research has been conducted on syn-

thesizing human motion for many years, with early works

employing a motion graph-based approach for synthesiz-

ing human motion [23, 5, 26, 24]. These approaches syn-

thesize human motion by combining motion graphs, which

are made by splitting full recorded motion sequences into

sub-sequences. However, music-conditioned dance genera-

tion requires a cross-modal understanding between dance

motion and musical attributes to generate not just plau-

sible dance sequences, but also matches the given music

piece. Recent works have used a learning based method for

dance generations such as CNN [27, 10], RNN [44, 49, 4],

GAN [48, 1, 41], and transformers network [46, 30, 28, 29,

14] to learn the correlation between musical attributes and

corresponding dance moves.

Li et al. [30] proposed a dance generation method using

a transformer network with full-attention mask, contrary to

other prior work (i.e., causal attention mask [29]), and cre-

ated a large dance motion dataset AIST++ with 3D and 2D

joints annotation alongside with music and dance genre an-

notations. Inspired by traditional animation technique, Li

et al. [28] proposed another transformer-based dance gen-

eration network designed to predict the key-frame for each

beat first and then interpolate in-between key-frames by us-

ing TCB spline [22] to represent the dance motions. One of

the recent works, Li et al. [46] proposed a two-stage dance

generation network to learn a robust discrete representation

of the human pose first, then predict the discrete represen-

tation instead of directly tampering with each human joint.

As the most recent work, Tseng et al. [50] proposed an ed-

itable dance generation from music using a diffusion-based

approach while leveraging a prior hand-crafted audio fea-

ture extraction method [9] to extract music features.

Among the aforementioned methods, many resorted to

Librosa [18] to obtain musical attributes as a component of

their network input [46, 30, 29, 14, 49, 48]. Contrary to our

proposed music code idea, these methods directly fed the

extracted music features from Librosa [18] onto their net-

work to learn the appropriate mapping between said music

feature and dance motion. On the other hand, Tseng et al.’s
proposed method [50] shares a similarity with our work as

they also leverage a strong input music feature extraction

method [9]. However, they neither conduct further analysis

for the effectiveness behind using the strong audio feature

extractor or use discrete features.
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Figure 2: Complete network pipeline including M2C and SM-GPT. We illustrate the combined network architecture of our

proposed method M2C alongside the dance generator network SM-GPT(derived from Motion GPT [46]). M2C formulates

discrete music code sequence k before feeding it to SM-GPT. SM-GPT maps k into multidimensional feature ẽk within their

codebooks, and creates the conditional input c through the residual sampling module. Motion GPT then generates novel

dance motion using c alongside xu and xl from their 3D Pose VQ-VAE. We train M2C and SM-GPT separately.

Discrete Latent Representation. One variation of latent

features is continuous latent variables created using an en-

coding network (e.g., variational autoencoder [42, 20]).

Discrete latent representation is more typically used for lan-

guage processing tasks given the discrete nature of language

(i.e., word tokens) [38, 3]. With that said, some recent com-

puter vision works successfully designed a method which

utilizes discrete latent space. Razavi et al. [40] designed

a multiscale hierarchical VQ-VAE to generate high-quality

images, rivalling modern GANs without the notorious GAN

training difficulty. Ramesh et al. [39] proposed a zero-shot

text-to-image method using discrete VAE as the image au-

toencoder. They also showed that discrete VAE reduces the

context size of the transformer network by a factor of 192.

Lastly, Li et al. [46] utilized the VQ-VAE design within

their Motion-VQ network to encode multiple human poses

into two pose codes.

Modelling Music Feature with VQ-VAE. There exists

some prior work that leveraged VQ-VAE [51, 40] for au-

dio data [9, 7]. Dhariwal et al. [9] utilized multiple separate

VQ-VAE models (inspired by Hierarchical VQ-VAE [40])

to model different temporal resolutions for the novel mu-

sic generation task. Bitton et al. [7] proposed a generative

model based on VQ-VAE [51] which disentangled loudness

and learned to quantize a given timbre distribution. Our

proposal, the M2C network, shares similarities with these

prior methods as it is designed based on VQ-VAE to ex-

tract discrete representation by quantizing music features.

Yet, unlike them, the motivation behind M2C is to formu-

late a music code sequence rather than leveraging the quan-

tized encoded features. This is evident as we use a trainable

codebook within the SM-GPT to learn a more appropriate

feature representation from each music code (refer to Sec. 3

for more details).

3. Proposed Method
We propose the M2C network to learn the discrete map-

ping of music codes using a set of music features. In prac-

tice, the M2C network serves as a substitution module that

can replace any music feature encoder module (e.g., FC

layer and 1D convolutional layer) in any music-conditioned

dance generation method. This is possible as it has no spe-

cific requirements and can fit any music feature combina-

tion, a versatile option for replacing existing music feature

encoders. However, using the M2C network for dance gen-

eration requires another network designed specifically for

dance generation. To this end, we combine the M2C net-

work with SM-GPT, a modified version of the SoTA dance

generation network, Motion GPT [46]. Figure 2 illustrates

the complete pipeline of our evaluation network, which in-

cludes both M2C and the SM-GPT.

3.1. Understanding Music Features

As a key component for the dance generation, we de-

scribe our findings for the music feature analysis. First, we

observe that prior dance generation works [46, 30, 28, 29,

25, 50] utilize Librosa [18] to extract music features. Li-

brosa is a public audio-processing toolbox, a common mu-

sic feature extraction tool for the dance generation task (ex-

cept for one method [1]). Each dance generation method

devises a specific music feature combination as music in-

put.

In Table 1, we show a comprehensive comparison of mu-

sic feature combinations. We can infer that MFCC is a
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Method Name
Music Features from Librosa [18]

MFCC MFCC Delta Chroma Others

Bailando [46] Yes Yes No Constant-Q Chromagram, Onset Strength, Tempogram

Li et al. [30] Yes No Yes One-Hot-Peaks, One-Hot-Beats

Danceformer [28] Yes No Yes -

TSMT [29] Yes Yes No Beat Interval

Dancing-to-Music [25] Yes Yes No MFCC Log Energy

Table 1: Input music features comparison. Most dance generation methods [25, 29, 28, 30, 46] use Librosa [18] for music

feature extraction. Despite having different specifications for their input music feature, every method includes MFCC) in

their music input. Other features are utilized sparingly according to the network’s design.

key input feature for dance generation methods, followed

by MFCC delta and Chroma. MFCC extracts the timbre

texture feature or spectrum features and is widely used for

speech-processing tasks [16, 13, 2, 21, 11]. The extracted

timbral characteristics are also particularly useful for music-

processing tasks [33, 36, 17, 35]. However, MFCC does not

construe rhythmic-related features. Therefore, most dance

generation methods [46, 30, 28, 29, 25] pair it with other

music features.

In Figure 3, we show that the nature of music feature

value distribution is unsuitable to be fed to a deep learn-

ing network directly. For example, the first coefficient of

MFCC is the offset value, which has a significantly different

mean and standard deviation from the rest of the MFCCs.

The value scaling imbalance puts more significance into the

first five MFCCs compared with the other coefficients. This

does not align with the deep learning principle as value nor-

Figure 3: Average value of each MFCC coefficients. We

present the average value of each coefficient in a bar chart.

We took the MFCC result of three sample music from the

Librosa tool [18], namely “choice”, “libri1”, and “sweet-

waltz”. Note that due to the massive scale imbalance, some

bars are missing for some coefficients (more noticeable af-

ter the fifth coefficient)

malization is not only significant but is often the decisive

factor to the method’s performance [43, 15, 45].

To alleviate this, we normalize the music features ac-

cording to their index in the feature vector (we refer to this

normalization method as the new norm). Note that this devi-

ates from the standard normalization technique that normal-

izes features throughout the whole vector dimension. We

formulate our music feature normalization method as:

mnorm =

{{
md,n −Mean

i∈N

(
md,i

)
Std
i∈N

(
md,i

) }D

d=0

}N

n=0

(1)

where m is the music feature, D is the total dimension of

the music feature vector, N is the sum of the music sample

and music sequence amount within the train or test dataset,

and Mean(md) and Std(md) refers to the mean and stan-

dard deviation of each music feature within the specific in-

dex d. Our proposed normalization function achieves a uni-

form value distribution, which resolves the scale issue ob-

served in the standard normalization technique that remains

across feature vector samples after normalization.

3.2. Music-to-Codes Network

We design the Music-to-Codes network (M2C) to ad-

dress the issue mentioned in Sec. 3.1. Inspired by VQ-

VAE [51], M2C consists of an encoder block E(x), which

encodes the music feature sequence m = 〈mt〉Tt=1 into a

sequence of encoded feature pairs h = 〈h1
t , h

2
t 〉Tt=1, a dis-

cretization bottleneck that quantizes h �→ ek to the nearest

vector ek = 〈e1kt
, e2kt

〉Tt=1 within the codebook pair C =

{{ek}Kk=1}N=2
n=1 , and a decoder block D(x) to decode e into

the reconstructed music feature sequence m̂ (illustrated in

Figure 4). M2C encodes only the spatial domain of m while

maintaining the temporal domain, resulting in a pair of dis-

crete music code sequences k = 〈k1t , k2t ∈ [K]〉Tt=1 where

K denotes the vocabulary key size. Each codebook CN=2
n=1

interacts with one of hn, creating a pair of en and kn. We

first train M2C until convergence to utilize M2C encoder

E(x) and codebook C for dance generation.
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Figure 4: M2C network architecture. M2C is a VQ-VAE [51] network designed to formulate music codes. Training M2C

is mandatory before using it for training SM-GPT.

We train M2C using the standard reconstruction

loss Lrec. alongside discretization bottleneck losses [51]

(i.e., Lcodebook and Lcommit). The reconstruction loss

Lrec.(m̂,m) calculates the distance between the recon-

structed music feature sequence m̂ and input music feature

sequence m. Following VQ-VAE [51], we define the dis-

cretization bottleneck losses as

Lcodebook =
1

T

∑
t

||sg[ht]− ekt
||22 (2)

to lessen the distance between the codebook feature ek
within key k and h where sg[.] denotes a stop-gradient pro-

cess and the loss is averaged towards the temporal domain

T , and

Lcommit =
1

T

∑
t

||ht − sg[ekt
]||22 (3)

to encourage the encoded feature h to commit to a certain

embedding space, limiting value fluctuation. Combining all

of the losses above creates the M2C training objective:

LM2C = Lrec.(m̂,m) + α× (Lcommit + Lcodebook) + β
(4)

where α is the hyperparameter for Lcommit and Lcodebook,

and β is the regularization value.

3.3. Stochastic Motion GPT (SM-GPT)

We leverage Motion GPT [46] as our dance predictor

module which will utilize the music codes from M2C. For

that reason, we added some modifications towards Motion

GPT to ensure compatibility with music codes k and la-

bel the modified version as SM-GPT. We first add a pair of

embedding space C̃ = {{ek}Kk=1}N=2
n=1 to map the music

codes into multidimensional feature k �→ ẽk. Embedding

space pair C̃ is applied to every
∑2

n

∑T
t {k}nt , creating a

sequence of multidimensional feature pair ẽ = 〈ẽ1t , ẽ2t 〉Tt=1.

This embedding space replaces the dense layer in Motion

GPT for input music feature processing. Having a dedicated

learnable embedding space within Motion GPT creates a

disconnect between m and ẽk which creates an opportunity

to learn a more appropriate representation for each input

music sample based on the extracted music codes.

Furthermore, we incorporate a conditional stochastic

sampling module directly after embedding space C̃ to im-

prove our dance generation diversity. Similar to the typi-

cal CVAE [47], we design a residual stochastic sampling

module (labeled as residual sampling) with two main paths,

the posterior network for training qθ(z|ẽ,x,y) and prior

network for testing pθ(z|ẽ,x). The posterior network

qθ(z|ẽ,x,y) approximates the posterior distribution over

the input dance motion x and music features ẽ with the aid

of the target dance motion y. Meanwhile, the prior network

pθ(z|ẽ,x) approximates the prior distribution over x and ẽ
without y, due to the lack of target information y during test

time. Both the posterior network and prior network utilize

the same encoder Esamp(x) for feature extraction, which is

composed of stacked multi-layer perceptrons (MLPs). We

utilize the reparameterization trick [20] and sample a noise

as input to enable backpropagation while preserving the

stochastic sampling aspect. Afterward, a residual connec-

tion adds the latent sampling result z to Esamp(x)’s result,

creating the conditional input c to Motion GPT alongside

the pose code sequence (refer to Li et al.’s explanation for

further details [46]). We show the overall architecture of

SM-GPT in Figure 2.
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3.4. Dance Generation with M2C

The problem of music-conditioned dance generation is

generating novel dance sequence ŷ = 〈yt〉Tt=1 given a piece

of conditioning dance motion x = 〈xt〉Tt=1 and condition-

ing music features m = 〈mt〉Tt=1. As stated previously,

we leverage the SM-GPT (explained in Sec. 3.3) which is

a modified version of a recent SoTA, Motion GPT [46], as

our dance generation network. Furthermore, we utilize a

pre-trained M2C to extract music codes k = 〈k1t , k2t 〉Tt=1

for the novel dance generation process. During this training

step, we only train the SM-GPT and utilize the M2C en-

coder and discretization bottleneck to extract music codes.

Figure 2 illustrates the complete network architecture for

novel dance generation using M2C.

To generate novel dance motions, we first extract mu-

sic codes k using M2C from the normalized music input

mnorm (explained in Sec. 3.1). This is performed using

the M2C encoder E(x) to encode the input music feature

sequence mt into hn
t , followed by the discretization bottle-

neck to quantize the encoded features hn
t into the quantized

features ent within the respective embedding space CN=2
n=1

and obtain music codes kn
t . As stated in Sec. 3.2, the M2C

encodes only the spatial domain while leaving the temporal

domain intact, maintaining the time step t within the input

music feature vector unaffected throughout the music codes

extraction process.

SM-GPT transforms the extracted music codes kn
t into

multidimensional features ẽnt using the codebook pair C̃.

This codebook pair C̃ is a trainable embedding space within

SM-GPT to interpret the music codes kn
t (not to be con-

fused with M2C’s codebook pair C). Having a distinct and

dedicated embedding space for each music code introduces

a non-linearity and enables the network to learn a more ap-

propriate representation. Afterward, we obtain the condi-

tional input ct from the residual sampling module (using the

posterior network while training or the prior network while

testing). Motion GPT takes the conditional input ct and the

pose code sequences from the 3D Pose VQ-VAE generate

novel dance movements (refer to Li et al.’s publication [46]

for more explanation).

We adopt Motion GPT’s training objective [46] to train

the novel dance generation network while adding the vari-

ational learning objective Stochastic Gradient Variational

Bayes (SGVB) [20] to train the residual sampling module.

Assume that z follows a multivariate Gaussian distribution

with a diagonal covariance matrix, we can write the training

objective as the evidence lower bound (ELBO)

LELBO = LCE −KL(qθ(z|ẽ,x,y)||pθ(z|ẽ,x)) (5)

where LCE is our reconstruction loss followed by the

Kullback-Leibler (KL) divergence between the posterior

and the prior distribution. Following Motion GPT, we de-

fine LCE as

LCE =
1

T

T∑
t=1

∑
h=u,l

CrossEntropy(aht , p
h
t+1) (6)

where at denotes the future pose code probability given a

past pose code xt and music code kn
t , pt+1 denotes the

GT future pose code, u, and l refers to the upper or lower

body pose code, respectively. We incorporate the KL cost
annealing [8] which allows the network to train for accuracy

by gradually increasing the KL term weight (from 0 to 1).

4. Experimental Results
4.1. Dataset

We train and test our method by using the AIST++

dataset proposed in [30]. AIST++ is a large dataset that

contains paired dance and music data, comprising 10 dif-

ferent dance genres. In total, the AIST++ dataset contains

992 3D dance motion sequences sampled at 60 FPS. The

duration for each dance motion sequence varies from 7.4s

to 48s. Out of the 992 motion sequences, 952 were used

for training, and the remaining 40 are for testing. For our

method training process, we simply utilize the paired mu-

sic and dance data and disregard the other annotations (e.g.,

RGB video, and different angled dance data).

4.2. Implementation Details

In this work, we leverage the human pose structure (hu-

man joint graph) parametric 3D body format SMPL [31] as

the body model. This is mainly due to our decision to com-

bine M2C with Motion GPT [46] (it utilizes SMPL as its

3D body model). Thus, the input and output pose dimen-

sions are 24-dim of human joints along with a 3-dim global

translation vector, resulting in a 219-dim vector. M2C han-

dles 30 samples of music data, each comprising exactly one

sample of music data using Librosa [18]. We utilize five cat-

egories of music features MFCC, MFCC delta, constant-Q
chromagram, onset strength, and tempogram. Combining

all the music features leaves us with 438-dim of music fea-

tures m. M2C encodes the 438-dim music features into a

pair of 55-dim music features h. Thus, we set the number of

K within M2C and SM-GPT (C and C̃ respectively) to 55-

dim to match the encoded music feature’s dimension. We

leverage multiple layers of 1D convolutional and 1D Conv-

ResNet within the M2C encoder and decoder. The M2C

decoder simply reverses the order of layers within the M2C

encoder. We first train M2C to learn a robust understanding

of the music feature before using M2C as a pre-trained mu-

sic code extractor while training SM-GPT. Training M2C

using NVIDIA RTX A6000 takes 2.5h while training the

M2C network alongside SM-GPT takes roughly 16.7h. We

observe that training SM-GPT with M2C increases GPU

memory usage by around 2.5% (from 23GB to 23.6GB).
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4.3. Evaluation Metrics

We evaluate our method M2C and SM-GPT quantita-

tively by calculating the accuracy and diversity metric be-

tween our generated dance motion and ground truth dance

motions. For an accurate evaluation, we adhere to the evalu-

ation protocol from prior works [30, 46, 29, 14, 52] by eval-

uating the distribution of the generated dance motion via

the Fréchet Inception Distance (FID). We utilize only one

motion feature extractor [12] following a recent work [46]

(contrary to using two feature extractor [30]). We perform

the quantitative evaluation on two front, the geometric as-

pect (FIDg and DIVk) [34] for evaluating the local motion

involving certain body parts, and the kinetic aspect (FIDk

and DIVk) [37] for measuring the kinetic attributes (e.g.,

global velocity, acceleration). We obtain diversity score

from the average distance within feature space between gen-

erated dance motions [30].

4.4. Method Evaluation and Comparison

We evaluate our method through a quantitative compar-

ison with SoTA prior works [29, 52, 14, 30, 46, 50]. The

evaluation is performed using the predetermined AIST++

test set containing 40 samples of dance and music pieces.

Moreover, we report the quantitative score of the ground

truth data AIST++ for comparison [46]. We compile the

quantitative scores from our method, prior works, and

ground truth data in Table 2. We presented two variations

of our method (i.e., w/o new norm achieves better score, yet

qualitatively worse compared to w/ new norm).

We observe the quantitative scores in Table 2 and

determine that our method achieves higher accuracy-

and diversity-based scores than most prior state-of-the-art

(SoTA) works. Moreover, our method gains a significant

score improvement from Bailando, which indicates that our

method improves the dance generation capability of the tar-

get dance generator network. For accuracy metric (i.e.,

FIDk and FIDg), our method outperforms the prior SoTA

and our baseline model [46] with an average of 23% score

improvement (at least 35% better FIDk and 10% better

FIDg). This is evident within the qualitative comparison

as our dance motions do not jitter as much as the base-

line method. Furthermore, our method is much closer to

the ground truth score (i.e., at least 6% worse FIDk and

19% worse FIDg), which suggests that our method gener-

ates dance motion at a similar quality level to the dataset.

Likewise, our method achieves higher diversity scores

than most prior SoTAs. Without the new norm, we out-

perform the baseline and prior SoTA diversity result (i.e.,

6% and 5% better DIVk and DIVg , respectively) and al-

most outperforms the dataset itself (i.e., 1% better DIVk

yet loses with 10% worse DIVg). This is on top of attaining

higher accuracy-based evaluation scores, which means that

our method successfully improves upon the baseline and

Method Name
Accuracy ↓ Diversity ↑

FIDk FIDg DIVk DIVg

GT (AIST++) 17.10 10.60 8.19 7.45

Li et al. [29] 86.43 43.46 6.85* 3.32

DanceNet [52] 69.18 25.49 2.86 2.85

Huang et al. [14] 73.42 25.92 3.52 4.87

FACT [30] 35.35 22.11 5.94 6.18

Bailando [46] 28.16 9.62 7.83 6.34

EDGE [50] - 23.08 9.48 5.72

M2C +SM-GPT +new norm 18.09 8.62 6.80 5.82

M2C +SM-GPT 14.68 6.04 8.30 6.64

Table 2: Quantitative evaluation between music condi-
tioned dance generation methods. Comparison is done

using the AIST++ dataset test set. The best and second best

results are presented in bold and underline, respectively.

We obtain the quantitative result from their respective pub-

lications, or a re-evaluation result [30, 46]. *As stated by

prior works, their generated dance motions are highly jit-

tery, resulting in high-velocity variation.

produces diverse dance sequences while remaining plausi-

ble and accurate.

However, we observe that the qualitative result from our

method w/ new norm is visibly superior compared to w/o

new norm. Despite ranking lower in the quantitative com-

parison, our method w/ new norm produces more lifelike

dance motion and does not always repeat the same motion

throughout the entire generated dance sequence. For more

explanation, refer to the supplementary material.

4.5. Ablation Studies

In this section, we perform multiple experiments to de-

termine the effectiveness of our proposed method and their

respective key designs.

Effectiveness of our contribution. We report the results of

our ablation experiment on M2C and SM-GPT in Table 3.

We show that adding res. sampling increases the diversity

to some degree at the cost of some accuracy. Moreover,

adding M2C is a huge quantitative boost to the quantitative

score across the board (except for DIVg). However, we

found that utilizing the new norm often reduces the quan-

titative result of our method (except for the base Motion

GPT network). This is evident in our quantitatively best

method as it utilizes both M2C and res. sampling without a

new norm. Despite that, combining all together (i.e., M2C,

res. sampling, new norm) achieves a balance between good

quantitative score and qualitative score. Refer to the sup-

plementary material for more detailed network ablation.

M2C Understanding of Music Features. Figure 5 shows

the frequency of extracted music code from the music se-

quences within AIST++ [30] test set. For each dance genre,

we calculate the percentage of each music code’s appear-
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Method Name
Accuracy ↓ Diversity ↑

FIDk FIDg DIVk DIVg

GT (AIST++) 17.10 10.60 8.19 7.45

Bailando [46] 28.16 9.62 7.83 6.34

S
M

-G
P

T

Motion GPT 66.02 35.62 2.89 3.55

+new norm 59.99 21.31 3.74 3.74

+res. sampling 73.81 61.76 3.61 9.89
+res. sampling

81.23 65.87 2.79 7.74
& +new norm

+
M

2
C

+new norm
38.14 11.58 7.11 6.46

& -res. samp.

-new norm 14.68 6.04 8.30 6.64
& +res. samp.

+All Ours Best 18.09 8.62 6.80 5.82

Table 3: Ablation study of the proposed M2C network.
Best and second best results are presented in bold and

underline, respectively.

ance towards the length of the music code sequence. We

then plot a stacked bar chart where we stack said percent-

age from every music sequence belonging to every dance

genre within the AIST++ test set. Thus, the y-axes shows

the music code distribution within the AIST++ test set.

We observe that within said figure, there is a visible ten-

dency for music belonging to each genre to utilize a specific

music code. The code 28 within C1 is only used for Ballet

Jazz music for example, while code 17 in both C1 and C2 is

the most utilized code, shared by many dance genres. Thus,

based on Figure 5, we can conclude that the formulated mu-

sic codes contain some genre-related information to benefit

the dance generation process. Note that the supplementary

material contains more detailed comparison regarding other

M2C network design with more detailed figures.

5. Conclusion

In this paper, we proposed music codes, a novel discrete

music representation to avoid the music feature value distri-

bution disparity. Furthermore, music codes create a feature

disconnect, allowing the dance generation network to learn

more informative features based on each music code. As

a proof, we showed that the MFCC value disparity indi-

cates a highly different value scale between the initial five

and the other coefficients, which is not an issue for music

codes due to their discrete nature. In addition, we propose

M2C network and SM-GPT to formulate music codes and

predict novel dance motions based on music codes, respec-

tively. Experimental results (including ablation study) us-

ing M2C and SM-GPT demonstrated that our proposed net-

work achieves its goal to formulate informative music codes

and generate high-quality dance motions. Further research

(a) M2C C1 (Codebook 1) music code frequency distribution.

(b) M2C’s C2 (Codebook 2) music code frequency distribution.

Figure 5: M2C’s code distribution within each codebook.
We compile the frequency of music codes for each music

sequence within the AIST++ test set.

can explore the possibilities of integrating music codes into

the dance generator network, creating a single end-to-end

music-conditioned dance generator method.
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