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Abstract

Sign language plays a crucial role as a distinct and vi-
tal mode of communication for diverse groups of people in
society. Each sign language encompasses a wide array of
signs, each characterized by unique local and global artic-
ulations, e.g. hand shape, motion profile, and the arrange-
ment of the hands, face, and body. Consequently, the do-
main of visual Sign Language Recognition (SLR) presents
a complex and challenging research area within the field
of computer vision, even with state-of-the-art models. This
survey paper provides a comprehensive overview of Iso-
lated Sign Language Recognition (ISLR), covering various
aspects including input modality, modelled sign language
parameters, fusion methods, and transfer learning, all of
which have an impact on the performance of SLR methods.
In addition, we present an overview of publicly available
benchmark datasets for ISLR as well as analyze the state-
of-the-art results achieved on these datasets. By examining
these different aspects along with benchmarking strategies,
we provide insights into the advancements, challenges, and
potential directions in ISLR research.

1. Introduction

Sign language (SL) is a visual language that is used by

deaf and hard-of-hearing people to communicate. It is com-

posed of hand gestures, facial expressions, and body move-

ments. It is estimated that there are over 70 million sign lan-

guage users worldwide. Sign languages are not universal,

each language has its own linguistic rules and grammatical

structures, as well as having a unique vocabulary that does

not necessarily have a one-to-one correspondence to spoken

language. Sign languages employ multiple complementary

channels to convey information [47], which can be grouped

under two main categories: manual and non-manual fea-

tures [3, 4].

The manual parameters refer to the hand motion, shape,
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Figure 1. Taxonomy and different aspects underpinning this survey

paper.

orientation and place of articulation. They play a fundamen-

tal role in conveying the core lexical and grammatical infor-

mation in sign language. Accurately capturing and inter-

preting these manual parameters is crucial for recognizing

and understanding sign language gestures, as they convey

the bulk of the linguistic content. Non-manual parameters

encompass facial expressions, head movements, body pos-

ture, and other elements that accompany and enhance the

meaning of the sign being gestured. These parameters pro-

vide valuable context, emotional nuances, and grammatical

information.

Sign language recognition (SLR) is the task of auto-

matically recognizing the sign language signs from videos

or images. SLR has a wide variety of applications, such

as real-time translation, sign language education, and sign

language-based human-computer-interaction. SLR can be

subdivided into three different branches: 1) finger-spelling,

a relatively simple task that involves a fixed set of characters

for that language, usually made of static hand gestures that

are presented in still images [35, 9]; 2) Isolated SLR (ISLR),

a more challenging task which involves the recognition of

individual signs that are performed in isolation in short

video [37, 20, 19, 30]; and 3) Continuous SLR (CSLR),

is the recognition of a sequence of signs that are performed

in a continuous manner, thus requires the extra overhead of

identifying individual signs in the sequence [6, 25, 24]. In

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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this paper we focus on ISLR.

In the past decade, SLR has witnessed a surge, more

specifically, with the advents of deep learning and avail-

ability of public datasets [44, 1, 5]. However, the task re-

mains challenging due to problems posed by background

clutter, partial occlusion, view-point, lighting changes, ex-

ecution rate and biometric variations. These challenges re-

main even with current deep learning approaches[33]. In

addition, ISLR systems must be robust to noise and occlu-

sion.

This survey provides a comprehensive overview of the

recent advances in deep learning-based ISLR. To gather this

data, we extensively review top conferences, journals, and

recent ISLR challenges. We first discuss the different input

modalities that have been used for ISLR, including RGB

videos, depth maps, and skeletal data, or a combination

thereof. We then survey the different types of sign language

parameters that have been modeled by deep learning meth-

ods, including manual parameters such as hand shape and

motion, and non-manual parameters such as facial expres-

sions and head pose. Next, we review the different fusion

methods that have been employed to combine information

from multiple sources or modalities. Finally, we discuss the

use of transfer learning techniques to improve the perfor-

mance of ISLR methods. Figure 1 highlights the taxonomy

underpinning this survey paper.

The choice of input modality for ISLR can have a signif-

icant impact on the performance of the recognition system.

RGB videos are the most commonly used input modality for

ISLR, as they provide a rich representation of the sign lan-

guage gesture. However, RGB videos can be challenging to

process due to the high dimensionality of the data and the

presence of noise and occlusions. Depth maps and skele-

tal data can provide complementary information to RGB

videos, and can help to improve the robustness of ISLR sys-

tems.

The performance of ISLR systems is also dependent

on the type of sign language parameters that are modeled.

Manual parameters such as hand shape and motion are the

most commonly modeled parameters, as they are essential

for conveying the meaning of sign language gestures. How-

ever, non-manual parameters such as facial expressions and

head pose can also provide useful information for ISLR. For

example, facial expressions can be used to convey emotions,

and head pose can be used to indicate the direction of focus.

In many cases, it is beneficial to fuse information from

multiple sources or modalities to improve the performance

of ISLR systems. Fusion methods can be classified into

three categories: early fusion, late fusion, and hybrid fu-

sion. Early fusion methods combine the data from multiple

sources at the feature level, while late fusion methods com-

bine the data at the decision level. Hybrid fusion methods

combine both early and late fusion approaches.

Figure 2. Two samples taken from ChaLearn LAP IsoGD [50] to

visualize the RGB input data.

In addition, this survey explores the utilization of trans-

fer learning techniques in ISLR. We investigate how pre-

trained models or knowledge from related tasks can be

leveraged to improve recognition performance, reduce the

need for large annotated datasets, and accelerate the training

process. We discuss various transfer learning approaches

and analyze their efficacy in the context of ISLR

Benchmarking and evaluation play a critical role in ad-

vancing the state-of-the-art in ISLR. To visualise the data,

a sample RGB from ChaLearn LAP IsoGD [50] is shown

in Figure 2. Therefore, we present a dedicated section

that provides an overview of publicly available benchmark

datasets for ISLR. We discuss prominent datasets, such as

AUTSL [44], WLASL [26], and BosphorusSign22k [5],

and highlight their characteristics, including the number of

classes, sample size, number of signers. Additionally, we

present state-of-the-art results achieved on these datasets,

showcasing the progress and shortcomings in ISLR.

This survey stands apart from other survey papers [33,

49] by providing:

• Insightful categorization and analysis of ISLR meth-

ods based on different input modalities, SL parameters,

fusion techniques, and transfer learning; highlighting

the pros and cons of each aspect.

• Comprehensive coverage of the most commonly used

benchmark datasets, along with deep learning based

methods developed in the last ten years, thereby pro-

viding readers with a complete overview of recent re-

search results and state-of-the-art methods.

• Discussion of the challenges of vision-based ISLR;

analysis of the limitations of available methods and

discussion of potential research directions.

2. Insights into State-of-the-Art

In this section we present an overview of the number

of studies on ISLR covering four aspects: input modality,

modelled sign language parameters, fusion methods, and

transfer learning.
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Figure 3. Number of published deep-learning based ISLR studies

w.r.t. type of input modality in the past decade. Since skeletal

data is extracted from either RGB or Depth data, we refrain from

including in this plot as a separate modality, but reflect it in the

corresponding modality from which it was extracted.

2.1. Different Input Modalities

SLR has witnessed a paradigm shift after 2005, when in-

trusive methods of acquisition (e.g. sensor gloves, colored

gloves, etc) have been less used, and instead non-intrusive

vision-based methods became more and more common (e.g.

RGB, Depth) . To date, the most common input modal-

ity used in research studies is RGB video [20, 32, 18, 11,

45, 37]. RGB video provides a rich representation of the

hand shapes, movements, and body postures used in sign

language. However, RGB video can be sensitive to noise,

occlusion, and background clutter.

Another paradigm shift took place in 2010 with the re-

cent development of cost-effective RGB-D sensors (e.g.

Microsoft Kinect and Asus Xtion), there has been growing

interest in using depth data for ISLR since. This is largely

because the extra dimension (depth) is insensitive to illu-

mination changes.In addition, depth data can provide more

accurate information about the 3D structure of the hand

and body, which can be useful for distinguishing between

similar-looking signs. Consequently, several methods based

on RGB-D data have been proposed and the approach has

proven to be a promising direction for SLR [20, 54, 52]. In-

terestingly, two studies in the last decade have relied solely

on the use of depth data [53] and [51].

Another input modality that has been explored for ISLR

is skeleton data [20, 2]. Skeleton data represents the po-

sitions of the joints in the body. Skeleton data can be ex-

tracted from RGB video or depth data using pose estimation

algorithms, e.g. OpenPose [7]. Skeleton data is a compact

representation of sign gestures, which makes it well-suited

Figure 4. Number of published deep-learning based ISLR studies

w.r.t. modelled sign language parameters in the past decade.

for use in mobile devices and other resource-constrained

systems. SLR models working on pose data have one or

two orders of magnitude fewer parameters than those that

process the video directly. However, skeleton data does not

provide information about the hand shapes or the 3D struc-

ture of the hand and body.

In Figure 3, we plot the number of ISLR studies that are

rely on different modalities in the past decade. While depth

data, RGB data, or a combination thereof has been com-

monly used, in the past 3 years, there is a trend of relying

more on just RGB data. This is due to the limitation is that

depth data is often less available than RGB video. This is

particularly important when deep learning methods models

pre-trained on depth-data do not exist. In addition, several

sign language video data lack depth, e.g. TV broadcasts [1]

and YouTube videos [30]. Accordingly, since 2020, there

has been more research aiming to rely on only RGB data,

evident by the work in [39, 37], and the recent ChaLearn

Looking at People Challenge on ISLR in CVPR 2021 [43],

which had an RGB-only track [48, 20, 18, 45, 11]. More-

over, Sarhan et al. [38] proposed generating pseudo depth

data to mitigate this problem, while still retaining the bene-

fits of depth data.

2.2. Modelled Sign Language Parameters

In this section, we investigate the sign language parame-

ters and features that are extracted based on the input data.

Both manual and non-manual parameters are important for

the recognition of sign language. Manual parameters are

essential for identifying the individual signs that are be-

ing made, while non-manual parameters are used to con-

vey additional meaning, such as emphasis, emotion, or sar-

casm. Therefore, research efforts in SLR focus on devel-
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Figure 5. Number of published deep-learning based ISLR studies

w.r.t. fusion method in the past decade.

oping techniques that effectively capture and analyze both

manual and non-manual parameters to ensure comprehen-

sive and robust recognition of SL.

While earlier, feature extraction methods relied on man-

ually extracting these parameters using image processing

techniques, with deep learning, it has become more com-

mon to use global feature representations that are based on

full-frame inputs [44, 38, 20]. However, in attempt to in-

crease SLR accuracy, and capture the fine-grained features,

there are still some methods that aim to highlight areas that

focus on certain parameters. This can be done via image

crops [51], e.g. hand crops, face crops, or mouth crops, or

by employing some form of attention mechanism to focus

the processing on relevant areas as done by [39, 37].

In Figure 4, we show the number of studies that specifi-

cally model certain parameters: full-frame, hands, face, and

mouth. We observe that in the early years of using deep

learning techniques for ISLR, the use of global full-frame

feature was dominated, as opposed to feature extraction.

However, it was quickly seen that it was not enough, and

more studies started modelling other parameters, especially

the hands, being the essential part to cover the manual fea-

tures. In the past two years, the use of full-frames started to

diminish. Using full-frame videos blew up the number of

parameters used for the models. The use of other low or-

der data, e.g. skeletal data, started to gain traction, as they

resulted in lighter models, that do not require pre-training.

2.3. Fusion Methods

SLR is intrinsically multi-modal, given the various num-

ber of features/parameters that are used to represent a ges-

ture. In order to improve the performance of ISLR systems,

it is often beneficial to fuse information from multiple input

Figure 6. Number of published deep-learning based ISLR studies

w.r.t. dataset used for transfer learning in the past decade. SL

indicates some sign language dataset.

modalities, as well as model different SL parameters. As

a result, most recent SLR propose a multi-stream ensem-

ble for each input type [18, 11, 20, 37], which are fused

together. Fusion methods used in ISLR can be classified

into categories: early fusion and late fusion. Early fusion

methods combine the information from the different input

modalities at an early stage of the processing pipeline. Late

fusion methods combine the information form the different

input modalities at a later stage of the process pipeline.

In Figure 5, we plot the number of deep learning studies

that employ early fusion and those that employ late (score)

fusion in the past decade. We observe that most SLR re-

search uses late fusion (score fusion) approaches, where

score probabilities of each stream is fused at the end to get

one final prediction. This is probably because it has less

model complexity and can achieve better run-time perfor-

mance. Some methods naively average the score predictions

of every stream [17, 37, 39, 20, 38], while others Gökçe et
al. [17] use a weighted score fusion.

2.4. Transfer Learning

Transfer learning can be beneficial for ISLR because it

can help overcome the problem of data scarcity. The large

datasets that are used to train the initial model can provide

the smaller dataset with a lot of useful information. Pre-

training, a common strategy in computer vision, produces

more generic feature representation and may alleviate over-

fitting for target tasks. For object recognition tasks, it is

common to pre-train the backbone on ImageNet [12], or

on Kinetics [8] for human action recognition tasks, or large

web sources [14] for the downstream tasks. To date, an iso-

lated sign language dataset that is as massive as ImageNet
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or Kinetics does not yet exist. For instance, the large-scale

ISLR dataset, AUTSL [44], has on average 169.6 video

clips per class compared to 1200 images per class in Im-

ageNet. Datasets for SLR have always been small due to

the difficulty and expertise required for acquiring and anno-

tating them. Even with datasets becoming larger [44, 31],

they are still not large enough to train Deep CNNs from

scratch. Therefore cross-domain transfer learning becomes

inevitable.

In Figure 6, we observe that in the years 2016 until 2021,

it was more common to rely on ImageNet. Researchers

would model SLR videos as still images in order to rely

on CNNs pre-trained on ImageNet, the strongest annotated

dataset available at the time. Starting 2018, after the re-

lease of Kinetics dataset, researchers recent papers success-

fully utilized I3D CNNs pre-trained on large human action

recognition datasets [36].

In the last 2 years, with the availability of larger ISLR,

we start to see some within-domain transfer learning, were

researchers rely on larger sign language datasets for pre-

training, showing promising results as will be shown in Sec-

tion 3.2.

3. Datasets and Benchmarking
In this section we present an overview of major, pub-

licly available benchmark datasets for ISLR as well as ana-

lyze the state-of-the-art results achieved on these datasets.

ISLR models are usually evaluated by one metric, accu-

racy. Benchmark datasets, challenges, and state-of-the-art

models do not provide more metrics. Unfortunately, this is

not so helpful to give further insights to the results and un-

derstanding the limitations of the proposed methods. Some

datasets [21] report top-1 and top-5 instance accuracy, as

well as top-1 and top-5 class accuracy. The benefits on in-

cluding top-5 accuracy is that it accounts for ambiguity in

the language, which could be resolved in context, just as

is the case in spoken languages. Calculating per class ac-

curacy allows to account for an unbalanced test set, and

thereby better for reflecting performance than plain accu-

racy.

3.1. Benchmark Datasets

SLR stands as an active domain of research; however, a

notable obstacle lies in the paucity of realistic large-scale

sign language datasets. As a result, a majority of studies

in the literature rely on training and evaluating their mod-

els with limited private or publicly accessible small-scale

datasets [22, 29, 57, 56]. However, in order to train a deep

learning based SLR model, the amount of training data is

crucial. in recent years, larger datasets have been pub-

lished [16, 43, 44, 26, 1], which contain a large vocabulary

size, large number of samples, with many signers. These

datasets help building practical SLR models. Although each

of them has several challenges, video samples usually have

a plain or simple background. This makes it difficult to de-

velop models that can be used in daily life.

Below, we summarize the most important ISLR datasets.

We refrain from including datasets that use intrusive meth-

ods, e.g. colored gloves, such as LSA64 [34], and smaller

datasets that are not commonly used as benchmarks. All

datasets mentioned below are signer-independent. Each

signer appears only in either training, validation or test

set. This is especially important because a powerful model

would pick up particularities about individual persons, and

recognition scores would be overly optimistic due to data

leakage.

ChaLearn LAP IsoGD [50]: The ChaLearn LAP RGB-

D Isolated Gesture Dataset (IsoGD) contains 47,933 RGB-

D tow-modality video sequences manually labeled into 249

categories, of which 35,878 samples belong to the train-

ing set. Each RGB-D video represents one gesture in-

stance, having 249 gesture labels performed by 21 differ-

ent individuals. The IsoGD benchmark is one of the latest

and largest RGB-D gesture recognition benchmarks and has

a clear evaluation protocol, on which the 2016 ChaLearn

LAP Large-scale Isolated Gesture Recognition Challenge

has been held.

Montalbano [16]: is a gesture dataset released by

ChaLearn2014 Looking At People Challenge, which con-

sists of 20 Italian gestures performed by 27 users. it con-

tains 940 video sequences, each containing 10 to 20 gesture

samples and around 14,000 samples in total (6,850 train,

3,454 validation, and 3,579 test samples). The videos are

recorded with MS Kinect in 640 × 480 pixel resolutions

and four types of data are provided: RGB, depth, user seg-

mentation, and skeleton.

MS-ASL [21] is an American sign language dataset

(ASL) containing a vocabulary size of 1,000, with 25,513

samples in total for training, validation and testing, respec-

tively. It is collected from a public video sharing platform,

i.e. YouTube, where many videos are performed by ASL

students and teachers. The Top-100 and Top-200 most fre-

quent words are chosen as its two subsets, referred to as

MSASL100, MSASL200. Unfortunately, this dataset is no

longer accessible, and has expired online.

AUTSL [44]: is one of the largest ISLR that was used

in the ChaLearn Looking at People Challenge in 2021 [43].

It consists of 36,302 samples from 226 sign categories, per-

formed by 43 signers. Variable backgrounds and multiple

signers. The videos are filmed at different locations and

from different viewpoints. All samples are provided as sep-

arate RGB and depth video files with a spatial resolution of

512 × 512 pixels and a temporal resolution of 30 frames

per second (FPS). The training set contains 28,142 samples

from 31 different signers, the validation set 4,418 samples

from 6 different signers and the test set 3,742 samples from
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Dataset Year Modalities Language Vocab #Subjects #Samples

ChaLearn LAP IsoGD [50] 2014 RGB, Depth Multiple 249 21 47,933

Montalbano [16] 2014 RGB, Depth Italian 20 27 14,000

MS-ASL [21] 2018 RGB American 1,000 222 25,513

AUTSL [44] 2020 RGB, Depth Turkish 226 43 38,336

WLASL2000 [26] 2020 RGB American 2,000 119 21,097

LSE Lex40 [13] 2020 RGB, Depth Spanish 40 32 1,368

BosphorusSign22k [31] 2020 RGB, Depth, Skeleton Turkish 744 6 22,542

BSL-1K [1] 2021 RGB British 1064 40 273,000

Table 1. Statistics of publicly available ISLR benchmark datasets that are commonly used for evaluation with deep learning techniques in

the past decade.

6 different signers. The samples have varying lengths, with

a median of 61 frames.

WLASL [26]: Word-Level American Sign Language

dataset is a large-scale ASL dataset. The videos were di-

rectly extracted from public Internet resources: educational

sign language websites and ASL tutorial videos on YouTube

This database is publicly available and distributed in 4 dif-

ferent subsets according to the number of included glosses

it contains: WLASL100, WLASL300, WLASL1000 and

WLASL2000. It consists of 2,000 signs performed by 119

signers and 21,083 samples. Each sign is performed by at

least 3 different signers. The dataset consists of only RGB

videos. It is collected from 20 different educational sign

language websites that provide lookup functions for ASL

signs and from ASL tutorial videos on YouTube. In the

videos, signers are in a nearly-frontal view with plain back-

ground, generally wearing a black colored clothes.

LSE Lex40 [13]: is a subset of LSE UVIGO, a multi-

source Spanish Sign Language database collected in several

scenarios for ISLR and XSLR purposes. Recordings were

simultaneously gathered with a high-speed Nikon D3400

and a Kinect v2. Deaf people, SL interpreters and SL stu-

dents participated in the recordings under lab controlled

conditions

BosphorusSign22k [31]: is another large-scale, iso-

lated Turkish sign language dataset that contains 744 signs,

22,542 video samples in which signs belong to health and

finance domains, and also cover frequently used signs in

daily activities. The dataset contains 6 signers; 1 of them is

reserved for testing. It is derived from BosphorusSign [5].

While the dataset is a valuable addition, it is not helpful

for improving SLR tasks, where distinguishing between in-

stances of similar sign classes with similar manual and non-

manual features is essential, rather more useful for spe-

cific applications with Q&A based interaction (e.g. bank-

ing, hospital desk applications). This is due to the way the

dataset is categorized (linguistically), sign glosses with the

same meaning but a different set of morphemes, were con-

sidered to belong to the same class.

MultiSign-ISLR [30]: is a new sign language corpora,

developed with the aim of generating a large corpus for

ISLR to address the resource scarcity and create a multi-

lingual dataset especially for pre-training purposes. We re-

frain from adding it to Table 1 as it is made up of both iso-

lated, continuous and continuous isolated gestures. While

the collected dataset is in RGB videos, the authors process

it to extract video frames of pose points. This alleviates pri-

vacy constraints, and allows to create much lighter models.

3.2. State-of-the-art Results and Performance
Benchmarks

Table 2 presents an extensive overview of state-of-the-

art results attained on major benchmark ISLR datasets. For

each method we highlight the four aforementioned aspects:

input modality, modelled SL parameters, fusion method,

and transfer learning, and the corresponding reported ac-

curacy.

In recent research direction for ISLR, there has been

a noticeable shift towards pose-based approaches. De

Coster et al. [11] introduced pose flow, drawing inspiration

from optical flow, to represent body movements based on

pose keypoints. They utilized visual transformer networks

to effectively capture spatial and temporal dependencies in

human pose. Similarly, Li et al. [26] presented pose-based

temporal graph convolution networks to model spatial and

temporal dependencies in human pose. Other works that

solely base on pose or skeletal data include [2] and [48].

These pose-based methodologies showcase the growing in-

terest and potential of using pose information for enhancing

ISLR systems.

Sincan and Keles [45] proposed an innovative approach

leveraging RGB motion history images (MHI) to con-

densely summarize entire sign language videos into single

frames. Their model effectively captures relevant spatial

and motion patterns from these images, employing motion-

based attention mechanisms to focus on pertinent spatial

regions. Furthermore, they proposed a fusion model that

combines RGB and RGB-MHI features, enhancing the rep-

resentation of sign language gestures

In a multi-modal approach, Gökçe et al. [17] utilized
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Dataset Method Modality SL Params Fusion TL Accuracy
C

h
aL

ea
rn

L
A

P
Is

o
G

D

Sceneflow+CNN [52] RGB, D FF Early,Score ImageNet 36.27 %

AMRL [53] Depth FF - ImageNet 39.23 %

DDI+CNN [51] Depth FF+Hands - NTU RGB-D [41] 43.72 %

Cooperative CNN [54] RGB, D FF None ImageNet 44.80 %

xDETVP-TRIMPS [58] RGB, D FF Score UCF-101 [46] 45.02 %

2SCVN-3DDSN [15] RGB, D FF Score ImageNet 49.17 %

C3D [28] RGB, D FF Score ImageNet 49.20 %

C3D+ConvLSTM [59] RGB, D FF Score Scratch 51.02 %

I3D-SLR [36] RGB FF Score ImageNet,Kinetics 62.09%

Attn-I3D (hybrid) [37] RGB FF Score ImageNet,Kinetics 65.02%

TD-SLR [39] RGB FF,Hands Score ImageNet,Kinetics 70.91%

M
S

-A
S

L

1
0
0
0

SignBERT [19] Pose Hands Score SL 57.06%

Baseline-I3D [21] RGB FF Score ImageNet,Kinetics 57.69%

BSL [1] RGB,Pose FF+Mouth Score Kinetics 61.55%

SignBERT [19] RGB Hands Score SL 67.96%

A
U

T
S

L

Baseline [44] RGB, D FF Score ImageNet 62.02 %

Baseline [44] RGB FF Score ImageNet 49.22 %

S3D [48] RGB FF None Kinetics,SL 90.27 %

VTN-PF [11] RGB,PF FF+Hands - ImageNet 92.92 %

RGB-MHI [45] RGB FF Weighted Score Kinetics 93.53 %

VLE-trans [18] RGB FF+Hands Weighted Score ImageNet 95.46 %

MS-G3D [48] RGB, Pose FF Weighted Score Kinetics,SL 96.51 %

TD-SLR [39] RGB FF Score ImageNet, Kinetics 97.93 %

SAM-SLR [20] RGB,Pose FF Score Kinetics,SL 98.42 %

SAM-SLR [20] RGB,D FF Score Kinetics,SL 98.53 %

W
L

A
S

L

1
0
0

Pose-TGCN [26] Pose FF - - 55.43%

SPOTER [2] Pose FF - - 63.18%

I3D [26] RGB FF - ImageNet,Kinetics 65.89%

TCK [27] RGB FF - Kinetics 77.52%

SignBERT [19] Pose Hands Score SL 79.07%

SignBERT [19] RGB FF+Hands Score SL 82.56%

W
L

A
S

L

3
0
0

Pose-TGCN [26] Pose FF - - 38.32%

SPOTER [2] Pose FF - - 43.78%

I3D [26] RGB FF - ImageNet,Kinetics 56.14%

TCK [27] RGB FF - Kinetics 68.56%

SignBERT [19] Pose Hands Score SL 70.36%

SignBERT [19] RGB FF+Hands Score SL 74.40%

W
L

A
S

L

2
0
0
0

Pose-TGCN [26] Pose FF - - 23.65%

I3D [26] RGB FF - ImageNet,Kinetics 32.48%

BSL [1] RGB,Pose FF+Mouth Score Kinetics 44.72%

SignBERT [19] Pose Hands Score SL 45.17%

SignBERT [19] RGB FF+Hands Score SL 52.08%

B
o
sp

h
o
ru

s

S
ig

n
2
k 3D ResNet [31] RGB Full-Frame Score Kinetics 78.85%

MC3-18 [17] RGB Full-Frame only Weighted Score Kinetics 86.91%

RGB-MHI [45] RGB Full-Frame Score AUTSL, ImageNet 94.83 %

MC3-18 [17] RGB FF+Hand+Face Weighted Score Kinetics 94.94%

Table 2. Performance comparison for different methods on commonly used RGB-D datasets in the past decade sorted by accuracy for each

dataset. The column TL mentions the dataset used for transfer learning, where SL means some sign language dataset. D denotes Depth.

FF denotes full-frame.
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OpenPose to extract face and hand regions from sign lan-

guage videos and used these modalities in conjunction with

full-body images. Additionally, they separately cropped

each hand and employed hand crops collectively in their

analysis. This integration of various image regions signifi-

cantly improved the understanding and recognition of sign

language gestures.

As for fusion techniques, Wang et al. [52] explored early

fusion, combining extracted features from both depth and

RGB modalities as a joint entity to create scene flow im-

ages. This strategy effectively leveraged complementary

information from both modalities enhancing the representa-

tion of sign language gestures, thereby improving the over-

all recognition performance. The authors in [23] fused RGB

and pose information, and model isolated SL videos using

a a skeleton heatmap-based feature.

Regarding transfer learning, Wang et al. represented the

data as scene flow images in 2D to benefit from pre-trained

models on ImageNet.

Vázquez-Enrı́quez et al. [48] conducted experiments

with pre-training models on different datasets. They

showed that pre-training on a small dataset, such as

WLASL200 or LSE Lex40, and fine-tuning on a larger

dataset like AUTSL did not significantly improve perfor-

mance, though it led to faster convergence. However, pre-

training on a large SLR dataset, specifically AUTSL, greatly

benefited results when fine-tuned on smaller datasets, like

LSE Lex40.

4. Conclusion and Future Prospects
The domain of visual SLR presents a complex and chal-

lenging research area within the realm of computer vision,

even with the use of state-of-the-art models. Through this

comprehensive survey paper, we have provided a detailed

overview of ISLR, delving into critical aspects such as input

modality, modelled sign language parameters, fusion meth-

ods, and transfer learning, all of which significantly impact

the performance of SLR methods.

In recent research, there is a noticeable trend towards

skeleton-based methods, following the progress in human

action recognition with spatial-temporal Graph Convolu-

tional Networks (GCN) [55, 42]. While the field of ISLR

has taken inspiration from these advancements [10, 48], it

remains in its early stages, leaving ample room for explo-

ration and innovation. Additionally, a new direction focuses

on depth estimation methods, aiming to reduce reliance on

specific acquisition methods. With the hope for light-weight

skeleton-based models, and simple acquisition methods, the

prospect of having accessible SLR on mobile phones seems

promising.

Looking ahead, the adoption of within-domain trans-

fer learning holds great promise for enhancing ISLR per-

formance. Such transfer learning strategy, akin to those

utilized in human action recognition, continue to evolve,

offering exciting prospects for bridging the gap between

different sign language recognition and improving over-

all recognition accuracy. In addition, techniques such as

self-supervised learning and multilingual fine-tuning have

proven effective in addressing low-resource data scenarios

in natural language and speech processing domains. These

techniques can be leveraged in ISLR, especially given that

the datasets listed in Table 1 are considered low-resource.

For instance, studies like those by Hu et al. [19] and Sel-

varaj et al. [40] delve into self-supervised training for ISLR,

while NC et al. [30] provide a large, 10-language corpus

that could serve as a pre-training dataset for multi-lingual

fine-tuning.

Embracing these emerging techniques and further delv-

ing into the potential of self-supervised learning and mul-

tilingual fine-tuning can open new doors for future ISLR

research. By incorporating these strategies, researchers can

build more robust and accurate sign language recognition

systems, enhancing communication and accessibility for the

deaf and hard-of-hearing communities.
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