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Abstract

Sign language plays a crucial role as a distinct and vi-
tal mode of communication for diverse groups of people in
society. Each sign language encompasses a wide array of
signs, each characterized by unique local and global artic-
ulations, e.g. hand shape, motion profile, and the arrange-
ment of the hands, face, and body. Consequently, the do-
main of visual Sign Language Recognition (SLR) presents
a complex and challenging research area within the field
of computer vision, even with state-of-the-art models. This
survey paper provides a comprehensive overview of Iso-
lated Sign Language Recognition (ISLR), covering various
aspects including input modality, modelled sign language
parameters, fusion methods, and transfer learning, all of
which have an impact on the performance of SLR methods.
In addition, we present an overview of publicly available
benchmark datasets for ISLR as well as analyze the state-
of-the-art results achieved on these datasets. By examining
these different aspects along with benchmarking strategies,
we provide insights into the advancements, challenges, and
potential directions in ISLR research.

1. Introduction

Sign language (SL) is a visual language that is used by
deaf and hard-of-hearing people to communicate. It is com-
posed of hand gestures, facial expressions, and body move-
ments. It is estimated that there are over 70 million sign lan-
guage users worldwide. Sign languages are not universal,
each language has its own linguistic rules and grammatical
structures, as well as having a unique vocabulary that does
not necessarily have a one-to-one correspondence to spoken
language. Sign languages employ multiple complementary
channels to convey information [47], which can be grouped
under two main categories: manual and non-manual fea-
tures [3, 4].

The manual parameters refer to the hand motion, shape,
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Figure 1. Taxonomy and different aspects underpinning this survey
paper.

orientation and place of articulation. They play a fundamen-
tal role in conveying the core lexical and grammatical infor-
mation in sign language. Accurately capturing and inter-
preting these manual parameters is crucial for recognizing
and understanding sign language gestures, as they convey
the bulk of the linguistic content. Non-manual parameters
encompass facial expressions, head movements, body pos-
ture, and other elements that accompany and enhance the
meaning of the sign being gestured. These parameters pro-
vide valuable context, emotional nuances, and grammatical
information.

Sign language recognition (SLR) is the task of auto-
matically recognizing the sign language signs from videos
or images. SLR has a wide variety of applications, such
as real-time translation, sign language education, and sign
language-based human-computer-interaction. SLR can be
subdivided into three different branches: 1) finger-spelling,
arelatively simple task that involves a fixed set of characters
for that language, usually made of static hand gestures that
are presented in still images [35, 9]; 2) Isolated SLR (ISLR),
a more challenging task which involves the recognition of
individual signs that are performed in isolation in short
video [37, 20, 19, 30]; and 3) Continuous SLR (CSLR),
is the recognition of a sequence of signs that are performed
in a continuous manner, thus requires the extra overhead of
identifying individual signs in the sequence [6, 25, 24]. In
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this paper we focus on ISLR.

In the past decade, SLR has witnessed a surge, more
specifically, with the advents of deep learning and avail-
ability of public datasets [44, 1, 5]. However, the task re-
mains challenging due to problems posed by background
clutter, partial occlusion, view-point, lighting changes, ex-
ecution rate and biometric variations. These challenges re-
main even with current deep learning approaches[33]. In
addition, ISLR systems must be robust to noise and occlu-
sion.

This survey provides a comprehensive overview of the
recent advances in deep learning-based ISLR. To gather this
data, we extensively review top conferences, journals, and
recent ISLR challenges. We first discuss the different input
modalities that have been used for ISLR, including RGB
videos, depth maps, and skeletal data, or a combination
thereof. We then survey the different types of sign language
parameters that have been modeled by deep learning meth-
ods, including manual parameters such as hand shape and
motion, and non-manual parameters such as facial expres-
sions and head pose. Next, we review the different fusion
methods that have been employed to combine information
from multiple sources or modalities. Finally, we discuss the
use of transfer learning techniques to improve the perfor-
mance of ISLR methods. Figure 1 highlights the taxonomy
underpinning this survey paper.

The choice of input modality for ISLR can have a signif-
icant impact on the performance of the recognition system.
RGB videos are the most commonly used input modality for
ISLR, as they provide a rich representation of the sign lan-
guage gesture. However, RGB videos can be challenging to
process due to the high dimensionality of the data and the
presence of noise and occlusions. Depth maps and skele-
tal data can provide complementary information to RGB
videos, and can help to improve the robustness of ISLR sys-
tems.

The performance of ISLR systems is also dependent
on the type of sign language parameters that are modeled.
Manual parameters such as hand shape and motion are the
most commonly modeled parameters, as they are essential
for conveying the meaning of sign language gestures. How-
ever, non-manual parameters such as facial expressions and
head pose can also provide useful information for ISLR. For
example, facial expressions can be used to convey emotions,
and head pose can be used to indicate the direction of focus.

In many cases, it is beneficial to fuse information from
multiple sources or modalities to improve the performance
of ISLR systems. Fusion methods can be classified into
three categories: early fusion, late fusion, and hybrid fu-
sion. Early fusion methods combine the data from multiple
sources at the feature level, while late fusion methods com-
bine the data at the decision level. Hybrid fusion methods
combine both early and late fusion approaches.
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Figure 2. Two samples taken from ChaLearn LAP IsoGD [50] to
visualize the RGB input data.

In addition, this survey explores the utilization of trans-
fer learning techniques in ISLR. We investigate how pre-
trained models or knowledge from related tasks can be
leveraged to improve recognition performance, reduce the
need for large annotated datasets, and accelerate the training
process. We discuss various transfer learning approaches
and analyze their efficacy in the context of ISLR

Benchmarking and evaluation play a critical role in ad-
vancing the state-of-the-art in ISLR. To visualise the data,
a sample RGB from Chalearn LAP IsoGD [50] is shown
in Figure 2. Therefore, we present a dedicated section
that provides an overview of publicly available benchmark
datasets for ISLR. We discuss prominent datasets, such as
AUTSL [44], WLASL [26], and BosphorusSign22k [5],
and highlight their characteristics, including the number of
classes, sample size, number of signers. Additionally, we
present state-of-the-art results achieved on these datasets,
showcasing the progress and shortcomings in ISLR.

This survey stands apart from other survey papers [33,
49] by providing:

* Insightful categorization and analysis of ISLR meth-
ods based on different input modalities, SL parameters,
fusion techniques, and transfer learning; highlighting
the pros and cons of each aspect.

* Comprehensive coverage of the most commonly used
benchmark datasets, along with deep learning based
methods developed in the last ten years, thereby pro-
viding readers with a complete overview of recent re-
search results and state-of-the-art methods.

 Discussion of the challenges of vision-based ISLR;
analysis of the limitations of available methods and
discussion of potential research directions.

2. Insights into State-of-the-Art

In this section we present an overview of the number
of studies on ISLR covering four aspects: input modality,
modelled sign language parameters, fusion methods, and
transfer learning.
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Figure 3. Number of published deep-learning based ISLR studies
w.r.t. type of input modality in the past decade. Since skeletal
data is extracted from either RGB or Depth data, we refrain from
including in this plot as a separate modality, but reflect it in the
corresponding modality from which it was extracted.

2.1. Different Input Modalities

SLR has witnessed a paradigm shift after 2005, when in-
trusive methods of acquisition (e.g. sensor gloves, colored
gloves, etc) have been less used, and instead non-intrusive
vision-based methods became more and more common (e.g.
RGB, Depth) . To date, the most common input modal-
ity used in research studies is RGB video [20, 32, 18, 11,
45, 37]. RGB video provides a rich representation of the
hand shapes, movements, and body postures used in sign
language. However, RGB video can be sensitive to noise,
occlusion, and background clutter.

Another paradigm shift took place in 2010 with the re-
cent development of cost-effective RGB-D sensors (e.g.
Microsoft Kinect and Asus Xtion), there has been growing
interest in using depth data for ISLR since. This is largely
because the extra dimension (depth) is insensitive to illu-
mination changes.In addition, depth data can provide more
accurate information about the 3D structure of the hand
and body, which can be useful for distinguishing between
similar-looking signs. Consequently, several methods based
on RGB-D data have been proposed and the approach has
proven to be a promising direction for SLR [20, 54, 52]. In-
terestingly, two studies in the last decade have relied solely
on the use of depth data [53] and [51].

Another input modality that has been explored for ISLR
is skeleton data [20, 2]. Skeleton data represents the po-
sitions of the joints in the body. Skeleton data can be ex-
tracted from RGB video or depth data using pose estimation
algorithms, e.g. OpenPose [7]. Skeleton data is a compact
representation of sign gestures, which makes it well-suited
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Figure 4. Number of published deep-learning based ISLR studies
w.r.t. modelled sign language parameters in the past decade.

for use in mobile devices and other resource-constrained
systems. SLR models working on pose data have one or
two orders of magnitude fewer parameters than those that
process the video directly. However, skeleton data does not
provide information about the hand shapes or the 3D struc-
ture of the hand and body.

In Figure 3, we plot the number of ISLR studies that are
rely on different modalities in the past decade. While depth
data, RGB data, or a combination thereof has been com-
monly used, in the past 3 years, there is a trend of relying
more on just RGB data. This is due to the limitation is that
depth data is often less available than RGB video. This is
particularly important when deep learning methods models
pre-trained on depth-data do not exist. In addition, several
sign language video data lack depth, e.g. TV broadcasts [1]
and YouTube videos [30]. Accordingly, since 2020, there
has been more research aiming to rely on only RGB data,
evident by the work in [39, 37], and the recent Chalearn
Looking at People Challenge on ISLR in CVPR 2021 [43],
which had an RGB-only track [48, 20, 18, 45, 11]. More-
over, Sarhan ef al. [38] proposed generating pseudo depth
data to mitigate this problem, while still retaining the bene-
fits of depth data.

2.2. Modelled Sign Language Parameters

In this section, we investigate the sign language parame-
ters and features that are extracted based on the input data.
Both manual and non-manual parameters are important for
the recognition of sign language. Manual parameters are
essential for identifying the individual signs that are be-
ing made, while non-manual parameters are used to con-
vey additional meaning, such as emphasis, emotion, or sar-
casm. Therefore, research efforts in SLR focus on devel-
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Figure 5. Number of published deep-learning based ISLR studies
w.r.t. fusion method in the past decade.

oping techniques that effectively capture and analyze both
manual and non-manual parameters to ensure comprehen-
sive and robust recognition of SL.

While earlier, feature extraction methods relied on man-
ually extracting these parameters using image processing
techniques, with deep learning, it has become more com-
mon to use global feature representations that are based on
full-frame inputs [44, 38, 20]. However, in attempt to in-
crease SLR accuracy, and capture the fine-grained features,
there are still some methods that aim to highlight areas that
focus on certain parameters. This can be done via image
crops [51], e.g. hand crops, face crops, or mouth crops, or
by employing some form of attention mechanism to focus
the processing on relevant areas as done by [39, 37].

In Figure 4, we show the number of studies that specifi-
cally model certain parameters: full-frame, hands, face, and
mouth. We observe that in the early years of using deep
learning techniques for ISLR, the use of global full-frame
feature was dominated, as opposed to feature extraction.
However, it was quickly seen that it was not enough, and
more studies started modelling other parameters, especially
the hands, being the essential part to cover the manual fea-
tures. In the past two years, the use of full-frames started to
diminish. Using full-frame videos blew up the number of
parameters used for the models. The use of other low or-
der data, e.g. skeletal data, started to gain traction, as they
resulted in lighter models, that do not require pre-training.

2.3. Fusion Methods

SLR is intrinsically multi-modal, given the various num-
ber of features/parameters that are used to represent a ges-
ture. In order to improve the performance of ISLR systems,
it is often beneficial to fuse information from multiple input
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Figure 6. Number of published deep-learning based ISLR studies
w.r.t. dataset used for transfer learning in the past decade. SL
indicates some sign language dataset.

modalities, as well as model different SL parameters. As
a result, most recent SLR propose a multi-stream ensem-
ble for each input type [18, 11, 20, 37], which are fused
together. Fusion methods used in ISLR can be classified
into categories: early fusion and late fusion. Early fusion
methods combine the information from the different input
modalities at an early stage of the processing pipeline. Late
fusion methods combine the information form the different
input modalities at a later stage of the process pipeline.

In Figure 5, we plot the number of deep learning studies
that employ early fusion and those that employ late (score)
fusion in the past decade. We observe that most SLR re-
search uses late fusion (score fusion) approaches, where
score probabilities of each stream is fused at the end to get
one final prediction. This is probably because it has less
model complexity and can achieve better run-time perfor-
mance. Some methods naively average the score predictions
of every stream [17, 37, 39, 20, 38], while others Gokge et
al. [17] use a weighted score fusion.

2.4. Transfer Learning

Transfer learning can be beneficial for ISLR because it
can help overcome the problem of data scarcity. The large
datasets that are used to train the initial model can provide
the smaller dataset with a lot of useful information. Pre-
training, a common strategy in computer vision, produces
more generic feature representation and may alleviate over-
fitting for target tasks. For object recognition tasks, it is
common to pre-train the backbone on ImageNet [12], or
on Kinetics [8] for human action recognition tasks, or large
web sources [14] for the downstream tasks. To date, an iso-
lated sign language dataset that is as massive as ImageNet
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or Kinetics does not yet exist. For instance, the large-scale
ISLR dataset, AUTSL [44], has on average 169.6 video
clips per class compared to 1200 images per class in Im-
ageNet. Datasets for SLR have always been small due to
the difficulty and expertise required for acquiring and anno-
tating them. Even with datasets becoming larger [44, 31],
they are still not large enough to train Deep CNNs from
scratch. Therefore cross-domain transfer learning becomes
inevitable.

In Figure 6, we observe that in the years 2016 until 2021,
it was more common to rely on ImageNet. Researchers
would model SLR videos as still images in order to rely
on CNNs pre-trained on ImageNet, the strongest annotated
dataset available at the time. Starting 2018, after the re-
lease of Kinetics dataset, researchers recent papers success-
fully utilized I3D CNNs pre-trained on large human action
recognition datasets [36].

In the last 2 years, with the availability of larger ISLR,
we start to see some within-domain transfer learning, were
researchers rely on larger sign language datasets for pre-
training, showing promising results as will be shown in Sec-
tion 3.2.

3. Datasets and Benchmarking

In this section we present an overview of major, pub-
licly available benchmark datasets for ISLR as well as ana-
lyze the state-of-the-art results achieved on these datasets.
ISLR models are usually evaluated by one metric, accu-
racy. Benchmark datasets, challenges, and state-of-the-art
models do not provide more metrics. Unfortunately, this is
not so helpful to give further insights to the results and un-
derstanding the limitations of the proposed methods. Some
datasets [21] report top-1 and top-5 instance accuracy, as
well as top-1 and top-5 class accuracy. The benefits on in-
cluding top-5 accuracy is that it accounts for ambiguity in
the language, which could be resolved in context, just as
is the case in spoken languages. Calculating per class ac-
curacy allows to account for an unbalanced test set, and
thereby better for reflecting performance than plain accu-
racy.

3.1. Benchmark Datasets

SLR stands as an active domain of research; however, a
notable obstacle lies in the paucity of realistic large-scale
sign language datasets. As a result, a majority of studies
in the literature rely on training and evaluating their mod-
els with limited private or publicly accessible small-scale
datasets [22, 29, 57, 56]. However, in order to train a deep
learning based SLR model, the amount of training data is
crucial. in recent years, larger datasets have been pub-
lished [16, 43, 44, 26, 1], which contain a large vocabulary
size, large number of samples, with many signers. These
datasets help building practical SLR models. Although each

of them has several challenges, video samples usually have
a plain or simple background. This makes it difficult to de-
velop models that can be used in daily life.

Below, we summarize the most important ISLR datasets.
We refrain from including datasets that use intrusive meth-
ods, e.g. colored gloves, such as LSA64 [34], and smaller
datasets that are not commonly used as benchmarks. All
datasets mentioned below are signer-independent. Each
signer appears only in either training, validation or test
set. This is especially important because a powerful model
would pick up particularities about individual persons, and
recognition scores would be overly optimistic due to data
leakage.

ChaLearn LAP IsoGD [50]: The ChalLearn LAP RGB-
D Isolated Gesture Dataset (IsoGD) contains 47,933 RGB-
D tow-modality video sequences manually labeled into 249
categories, of which 35,878 samples belong to the train-
ing set. Each RGB-D video represents one gesture in-
stance, having 249 gesture labels performed by 21 differ-
ent individuals. The IsoGD benchmark is one of the latest
and largest RGB-D gesture recognition benchmarks and has
a clear evaluation protocol, on which the 2016 ChalLearn
LAP Large-scale Isolated Gesture Recognition Challenge
has been held.

Montalbano [16]: is a gesture dataset released by
Chalearn2014 Looking At People Challenge, which con-
sists of 20 Italian gestures performed by 27 users. it con-
tains 940 video sequences, each containing 10 to 20 gesture
samples and around 14,000 samples in total (6,850 train,
3,454 validation, and 3,579 test samples). The videos are
recorded with MS Kinect in 640 x 480 pixel resolutions
and four types of data are provided: RGB, depth, user seg-
mentation, and skeleton.

MS-ASL [21] is an American sign language dataset
(ASL) containing a vocabulary size of 1,000, with 25,513
samples in total for training, validation and testing, respec-
tively. It is collected from a public video sharing platform,
i.e. YouTube, where many videos are performed by ASL
students and teachers. The Top-100 and Top-200 most fre-
quent words are chosen as its two subsets, referred to as
MSASL100, MSASL200. Unfortunately, this dataset is no
longer accessible, and has expired online.

AUTSL [44]: is one of the largest ISLR that was used
in the Chalearn Looking at People Challenge in 2021 [43].
It consists of 36,302 samples from 226 sign categories, per-
formed by 43 signers. Variable backgrounds and multiple
signers. The videos are filmed at different locations and
from different viewpoints. All samples are provided as sep-
arate RGB and depth video files with a spatial resolution of
512 x 512 pixels and a temporal resolution of 30 frames
per second (FPS). The training set contains 28,142 samples
from 31 different signers, the validation set 4,418 samples
from 6 different signers and the test set 3,742 samples from
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Dataset Year Modalities Language Vocab #Subjects #Samples
ChaLearn LAP IsoGD [50] 2014 RGB, Depth Multiple 249 21 47,933
Montalbano [16] 2014 RGB, Depth Italian 20 27 14,000
MS-ASL [21] 2018 RGB American 1,000 222 25,513
AUTSL [44] 2020 RGB, Depth Turkish 226 43 38,336
WLASL2000 [26] 2020 RGB American 2,000 119 21,097
LSE Lex40 [13] 2020 RGB, Depth Spanish 40 32 1,368
BosphorusSign22k [31] 2020 RGB, Depth, Skeleton Turkish 744 6 22,542
BSL-1K [1] 2021 RGB British 1064 40 273,000

Table 1. Statistics of publicly available ISLR benchmark datasets that are commonly used for evaluation with deep learning techniques in

the past decade.

6 different signers. The samples have varying lengths, with
a median of 61 frames.

WLASL [26]: Word-Level American Sign Language
dataset is a large-scale ASL dataset. The videos were di-
rectly extracted from public Internet resources: educational
sign language websites and ASL tutorial videos on YouTube
This database is publicly available and distributed in 4 dif-
ferent subsets according to the number of included glosses
it contains: WLASL100, WLASL300, WLASL1000 and
WLASL2000. It consists of 2,000 signs performed by 119
signers and 21,083 samples. Each sign is performed by at
least 3 different signers. The dataset consists of only RGB
videos. It is collected from 20 different educational sign
language websites that provide lookup functions for ASL
signs and from ASL tutorial videos on YouTube. In the
videos, signers are in a nearly-frontal view with plain back-
ground, generally wearing a black colored clothes.

LSE_Lex40 [13]: is a subset of LSE_UVIGO, a multi-
source Spanish Sign Language database collected in several
scenarios for ISLR and XSLR purposes. Recordings were
simultaneously gathered with a high-speed Nikon D3400
and a Kinect v2. Deaf people, SL interpreters and SL stu-
dents participated in the recordings under lab controlled
conditions

BosphorusSign22k [31]: is another large-scale, iso-
lated Turkish sign language dataset that contains 744 signs,
22,542 video samples in which signs belong to health and
finance domains, and also cover frequently used signs in
daily activities. The dataset contains 6 signers; 1 of them is
reserved for testing. It is derived from BosphorusSign [5].
While the dataset is a valuable addition, it is not helpful
for improving SLR tasks, where distinguishing between in-
stances of similar sign classes with similar manual and non-
manual features is essential, rather more useful for spe-
cific applications with Q&A based interaction (e.g. bank-
ing, hospital desk applications). This is due to the way the
dataset is categorized (linguistically), sign glosses with the
same meaning but a different set of morphemes, were con-
sidered to belong to the same class.

MultiSign-ISLR [30]: is a new sign language corpora,

developed with the aim of generating a large corpus for
ISLR to address the resource scarcity and create a multi-
lingual dataset especially for pre-training purposes. We re-
frain from adding it to Table 1 as it is made up of both iso-
lated, continuous and continuous isolated gestures. While
the collected dataset is in RGB videos, the authors process
it to extract video frames of pose points. This alleviates pri-
vacy constraints, and allows to create much lighter models.

3.2. State-of-the-art Results and Performance
Benchmarks

Table 2 presents an extensive overview of state-of-the-
art results attained on major benchmark ISLR datasets. For
each method we highlight the four aforementioned aspects:
input modality, modelled SL parameters, fusion method,
and transfer learning, and the corresponding reported ac-
curacy.

In recent research direction for ISLR, there has been
a noticeable shift towards pose-based approaches. De
Coster et al. [11] introduced pose flow, drawing inspiration
from optical flow, to represent body movements based on
pose keypoints. They utilized visual transformer networks
to effectively capture spatial and temporal dependencies in
human pose. Similarly, Li ez al. [26] presented pose-based
temporal graph convolution networks to model spatial and
temporal dependencies in human pose. Other works that
solely base on pose or skeletal data include [2] and [48].
These pose-based methodologies showcase the growing in-
terest and potential of using pose information for enhancing
ISLR systems.

Sincan and Keles [45] proposed an innovative approach
leveraging RGB motion history images (MHI) to con-
densely summarize entire sign language videos into single
frames. Their model effectively captures relevant spatial
and motion patterns from these images, employing motion-
based attention mechanisms to focus on pertinent spatial
regions. Furthermore, they proposed a fusion model that
combines RGB and RGB-MHI features, enhancing the rep-
resentation of sign language gestures

In a multi-modal approach, Gokge et al. [17] utilized
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Dataset Method Modality SL Params Fusion TL Accuracy
Sceneflow+CNN [52] RGB, D FF Early,Score ImageNet 36.27 %

A AMRL [53] Depth FF - ImageNet 39.23 %
g DDI+CNN [51] Depth FF+Hands - NTU RGB-D [41] 43.72 %
n Cooperative CNN [54] RGB, D FF None ImageNet 44.80 %
5 xDETVP-TRIMPS [58] RGB, D FF Score UCF-101 [46] 45.02 %
g 2SCVN-3DDSN [15] RGB, D FF Score ImageNet 49.17 %
§ C3D [28] RGB, D FF Score ImageNet 49.20 %
= C3D+ConvLSTM [59] RGB, D FF Score Scratch 51.02 %
®) I3D-SLR [36] RGB FF Score ImageNet,Kinetics 62.09%
Attn-13D (hybrid) [37] RGB FF Score ImageNet,Kinetics 65.02%
TD-SLR [39] RGB FF,Hands Score ImageNet,Kinetics 70.91%

| SignBERT [19] Pose Hands Score SL 57.06%
2 = Baseline-13D [21] RGB FF Score ImageNet,Kinetics 57.69%
v = BSL [1] RGB,Pose FF+Mouth Score Kinetics 61.55%
= SignBERT [19] RGB Hands Score SL 67.96%
Baseline [44] RGB, D FF Score ImageNet 62.02 %

Baseline [44] RGB FF Score ImageNet 49.22 %

S3D [48] RGB FF None Kinetics,SL 90.27 %

A VTN-PF [11] RGB,PF FF+Hands - ImageNet 92.92 %
‘é’ RGB-MHI [45] RGB FF Weighted Score Kinetics 93.53 %
2 VLE-trans [18] RGB FF+Hands Weighted Score ImageNet 95.46 %
MS-G3D [48] RGB, Pose FF Weighted Score Kinetics,SL 96.51 %

TD-SLR [39] RGB FF Score ImageNet, Kinetics  97.93 %
SAM-SLR [20] RGB,Pose FF Score Kinetics,SL 98.42 %
SAM-SLR [20] RGB.D FF Score Kinetics,SL 98.53 %
Pose-TGCN [26] Pose FF - - 55.43%

) SPOTER [2] Pose FF - - 63.18%
Z2g I13D[26] RGB FF - ImageNet Kinetics ~ 65.89%
; — TCK [27] RGB FF - Kinetics 77.52%
SignBERT [19] Pose Hands Score SL 79.07%
SignBERT [19] RGB FF+Hands Score SL 82.56%
Pose-TGCN [26] Pose FF - - 38.32%

) SPOTER [2] Pose FF - - 43.78%
2 S 13D [26] RGB FF - ImageNet,Kinetics 56.14%
§ “  TCK [27] RGB FF - Kinetics 68.56%
SignBERT [19] Pose Hands Score SL 70.36%
SignBERT [19] RGB FF+Hands Score SL 74.40%
Pose-TGCN [26] Pose FF - - 23.65%

7 o I3D[26] RGB FF - ImageNet,Kinetics ~ 32.48%
58 BSL[I] RGB,Pose  FF+Mouth Score Kinetics 44.72%
= o SignBERT [19] Pose Hands Score SL 45.17%
SignBERT [19] RGB FF+Hands Score SL 52.08%

5 o 3D ResNet [31] RGB Full-Frame Score Kinetics 78.85%
24 MC3-18 [17] RGB Full-Frame only ~ Weighted Score Kinetics 86.91%
2* E%O RGB-MHI [45] RGB Full-Frame Score AUTSL, ImageNet 94.83 %
as) MC3-18 [17] RGB FF+Hand+Face  Weighted Score Kinetics 94.94%

Table 2. Performance comparison for different methods on commonly used RGB-D datasets in the past decade sorted by accuracy for each
dataset. The column TL mentions the dataset used for transfer learning, where SL means some sign language dataset. D denotes Depth.
FF denotes full-frame.
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OpenPose to extract face and hand regions from sign lan-
guage videos and used these modalities in conjunction with
full-body images. Additionally, they separately cropped
each hand and employed hand crops collectively in their
analysis. This integration of various image regions signifi-
cantly improved the understanding and recognition of sign
language gestures.

As for fusion techniques, Wang et al. [52] explored early
fusion, combining extracted features from both depth and
RGB modalities as a joint entity to create scene flow im-
ages. This strategy effectively leveraged complementary
information from both modalities enhancing the representa-
tion of sign language gestures, thereby improving the over-
all recognition performance. The authors in [23] fused RGB
and pose information, and model isolated SL videos using
a a skeleton heatmap-based feature.

Regarding transfer learning, Wang et al. represented the
data as scene flow images in 2D to benefit from pre-trained
models on ImageNet.

Viazquez-Enriquez et al. [48] conducted experiments
with pre-training models on different datasets. They
showed that pre-training on a small dataset, such as
WLASL200 or LSE_Lex40, and fine-tuning on a larger
dataset like AUTSL did not significantly improve perfor-
mance, though it led to faster convergence. However, pre-
training on a large SLR dataset, specifically AUTSL, greatly
benefited results when fine-tuned on smaller datasets, like
LSE_Lex40.

4. Conclusion and Future Prospects

The domain of visual SLR presents a complex and chal-
lenging research area within the realm of computer vision,
even with the use of state-of-the-art models. Through this
comprehensive survey paper, we have provided a detailed
overview of ISLR, delving into critical aspects such as input
modality, modelled sign language parameters, fusion meth-
ods, and transfer learning, all of which significantly impact
the performance of SLR methods.

In recent research, there is a noticeable trend towards
skeleton-based methods, following the progress in human
action recognition with spatial-temporal Graph Convolu-
tional Networks (GCN) [55, 42]. While the field of ISLR
has taken inspiration from these advancements [10, 48], it
remains in its early stages, leaving ample room for explo-
ration and innovation. Additionally, a new direction focuses
on depth estimation methods, aiming to reduce reliance on
specific acquisition methods. With the hope for light-weight
skeleton-based models, and simple acquisition methods, the
prospect of having accessible SLR on mobile phones seems
promising.

Looking ahead, the adoption of within-domain trans-
fer learning holds great promise for enhancing ISLR per-
formance. Such transfer learning strategy, akin to those

3217

utilized in human action recognition, continue to evolve,
offering exciting prospects for bridging the gap between
different sign language recognition and improving over-
all recognition accuracy. In addition, techniques such as
self-supervised learning and multilingual fine-tuning have
proven effective in addressing low-resource data scenarios
in natural language and speech processing domains. These
techniques can be leveraged in ISLR, especially given that
the datasets listed in Table 1 are considered low-resource.
For instance, studies like those by Hu et al. [19] and Sel-
varaj et al. [40] delve into self-supervised training for ISLR,
while NC et al. [30] provide a large, 10-language corpus
that could serve as a pre-training dataset for multi-lingual
fine-tuning.

Embracing these emerging techniques and further delv-
ing into the potential of self-supervised learning and mul-
tilingual fine-tuning can open new doors for future ISLR
research. By incorporating these strategies, researchers can
build more robust and accurate sign language recognition
systems, enhancing communication and accessibility for the
deaf and hard-of-hearing communities.
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