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Abstract

Kinship recognition aims to determine whether the sub-
jects in two facial images are kin or non-kin, which is an
emerging and challenging problem. However, most previ-
ous methods focus on heuristic designs without consider-
ing the spatial correlation between face images. In this
paper, we aim to learn discriminative kinship representa-
tions embedded with the relation information between face
components. To achieve this goal, we propose the Face
Componential Relation Network (FaCoRNet), which learns
the relationship between face components among images
with a cross-attention mechanism, to automatically learn
the important facial regions for kinship recognition. More-
over, we propose Relation-Guided Contrastive Learning,
which adapts the loss function by the guidance from cross-
attention to learn more discriminative feature representa-
tions. The proposed FaCoRNet outperforms previous state-
of-the-art methods by large margins for experiments on
multiple public kinship recognition benchmarks. Our code
is available at https://github.com/wtnthu/FaCoR.

1. Introduction

In recent years, kinship recognition, which aims to de-

termine whether a given pair of face images have a kinship

relation, has attracted public attention. Kinship recognition

is inspired by the biological discovery [6] that the appear-

ance of a human face implies clues about kinship-related

information. It can be widely used in various scenarios in-

cluding missing child search [22], automatic album orga-

nization [41], child adoption [35], and social media appli-

cations [7]. Facial kinship recognition includes both face

representation learning and face similarity matching, where

the former aims to learn discriminative features for input
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Figure 1. Our method uses face components as clues and guides

the training with the relation of facial image pairs, where the rela-

tion estimation for face components (darker blue and green colors)

can further pull kin faces together and push away non-kin faces,

improving the efficacy of contrastive learning from the original

whole-face features (lighter blue and green colors).

facial images, and the latter is to design models to predict

the kin/non-kin relationship between images in a pair. The

main challenges of kinship are mixed variations due to an

uncontrolled environment, such as the large gap in age, ex-

pression, pose, illumination, etc. Under these variations, it

is challenging to learn representations that can help discover

genetic relationships between two samples from facial ap-

pearance and identify hidden similarities inherited from ge-

netic connections between different identities.

To deal with these challenges, several traditional ap-

proaches incorporate hand-crafted features [22] with metric

learning [12] to learn discriminative features. Motivated by

the success of deep learning, various methods improve kin-

ship recognition by exploiting powerful deep feature repre-

sentations. CNN-Point [38] first adopts a CNN model to ex-

tract discriminative features, outperforming previous hand-

crafted ones. For the extension, several CNN-based ap-

proaches [5, 23, 37] focus on designing fusion mechanisms

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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to integrate the features among an image pair. Recently,

the supervised contrastive approach [40] learns discrimina-

tive features by contrastive loss, which achieves state-of-

the-art performance in kinship recognition. However, the

existing approaches have several issues. First, most meth-

ods directly exploit feature vector representations, ignoring

spatial correlation within face images. Moreover, most of

the approaches rely on heuristic designs. For example, the

feature fusion approaches [36, 38] utilize several arithmetic

combinations or feature concatenation to fuse the feature

pair for kinship recognition. Despite the state-of-the-art per-

formance from [40], the results are sensitive in the hyperpa-

rameter setting of the contrastive loss.

To address the above issues, let us first think again: How
do humans recognize kinship relationships? To recognize

accurately, humans usually first compare several biological

face components of two people, such as eye color, nose

size, cheekbone shape, etc., and then analyze the relation
between these comparisons. For example, if the noses in

the image pair appear similarly, then there is a higher chance

that this is a kin pair. Therefore, we adopt this idea, focusing

on how to exploit these face components to learn the rela-
tion between images in a pair, where clues from face com-
ponents can infer the genetic relationships between them. In

this work, we aim to learn discriminative feature representa-

tions embedded with face component information, without

a strong reliance on heuristic designs, as shown in Fig. 1.

To achieve the abovementioned goal, we first propose

the Face Componential Relation (FaCoR) module to learn

the relation between images in a pair with the considera-

tion of face components. The feature representations are

then enhanced with the cross-relation between face com-

ponents (e.g., eyes, nose, mouth, etc.) which are critical

to kinship recognition. Moreover, we propose the novel

Relation-Guided Contrastive Loss (Rel-Guide) based on

cross-attention estimation instead of heuristic tuning [40].

The attention map can control the degree of penalty in the

loss function, which can let the feature representation of

kin relation get closer in the feature space. In other words,

it penalizes the hard samples to learn more discriminative

features for kinship recognition. The whole architecture is

named Face Componential Relation Network (FaCoRNet).
The experimental results show that our FaCoRNet achieves

SOTA performance on the largest public kinship recogni-

tion benchmark, FIW [26]. To be specific, our work outper-

forms the previous best method in three tasks with standard

protocol by 2.7% (79.3%→ 82.0%) in the kinship verifica-

tion task, 0.7% (84.4% → 85.1%) in the tri-subject verifi-

cation task, and 14.2% (40.0% → 54.2%) in the search and

retrieval task. We also show that our FaCoRNet achieves

SOTA performance on the other two widely-used kinship

recognition benchmarks, KinFaceW-I and KinFaceW-II.

Our contributions are summarized as follows:

• We propose a novel Face Componential Relation
Network (FaCoRNet) that learns relevance from the

face components of image pairs with the cross-

attention mechanism, and adaptively learns important

face components for kinship recognition.

• We propose a novel Relation-Guided Contrastive Loss
that embeds cross-relation estimates to guide the con-

trastive loss without heuristic tuning, which controls

how hard samples are penalized during training.

• The proposed FaCoRNet model outperforms previous

SOTA methods by large margins on multiple standard

kinship recognition benchmarks.

2. Related Work
In the past few years, several kinship recognition ap-

proaches have been proposed [3, 5, 12, 13, 15, 18, 21, 22,

23, 29, 30, 32, 37, 38, 40], where most of them focus on

extracting discriminative feature for each facial image. Tra-

ditional approaches include designing hand-crafted feature

extractors [1, 4, 31] and metric learning [9, 10, 15] for solv-

ing similarity metrics in kinship recognition. Recently, deep

learning methods make significant advances, including two

main categories: feature fusion and deep metric learning.

Feature Fusion: [38] utilizes the multiple face regions as

the model inputs to learn richer facial features for kinship

recognition. The multi-task deep learning-based approach

[5] uses seven kinship sub-classes to jointly train with the

kinship labels for kin recognition. Ustc-nelslip [36] adopts a

siamese network to extract features and designs three differ-

ent math operations to fuse feature pairs, followed by direct

concatenation with a fully-connected layer. [29] proposes

an advanced knowledge-based tensor similarity extraction

framework for automatic facial kinship verification that uti-

lizes four pre-trained networks to improve the performance.

Deep Metric Learning: [11] proposes coarse-to-fine trans-

fer to capture kinship-specific features from faces using su-

pervised coarse pre-training and domain-specific retraining

paradigms. The contrastive learning approach [40] utilizes

supervised contrastive loss with the ArcFace pre-trained

model [8] and two MLP layers to learn more robust features

in the training stage. For the evaluation, it removes the MLP

layers and extracts the middle-layer backbone features to

evaluate the cosine similarity to determine the kinship rela-

tion in an image pair, thus achieving state-of-the-art perfor-

mance for kinship recognition. [15] presents a novel cross-

pair metric learning approach that introduces a k-tuplet loss.

This approach effectively captures both low-order and high-

order discriminative features from multiple negative pairs.

The main issues of the above methods are that most

methods rely on heuristic designs, and directly exploit

feature vector representations, ignoring spatial correlation

within face images. Different from the above approaches,
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our proposed FaCoRNet considers how to use face compo-

nents to learn the correlation between image pairs, and find

out important facial parts for kinship recognition. More-

over, our approach incorporates the face componential cor-

relation to adapt contrastive learning automatically, without

a strong reliance on heuristic designs.

3. Proposed Methods
In this work, we propose the Face Componential

Relation Network (FaCoRNet), which considers the face
components and learns the cross-relation between face im-

ages in a pair to benefit kinship recognition. FaCoRNet con-

sists of a shared-weights backbone that extracts features

as the inputs to the Face Componential Relation (FaCoR)
module. FaCoR is an attention-based module that computes

the cross-relation among a face image pair and enhances

feature representations to fully exploit the symmetry of face

components in the image pair. In addition, cross-layer fea-

tures are mutually interacted and fused in the channel di-

mension by the Channel Interaction (CI) blocks (Sec. 3.1).

Moreover, the proposed Relation-Guided Contrastive Loss
utilizes the computed cross-relation to guide the contrastive

loss, facilitating learning of more discriminative representa-

tions for kinship recognition (Sec. 3.2). The overall frame-

work is illustrated in Fig. 2.

3.1. Face Componential Relation

One core question for kinship recognition is: How to
properly extract and compute the relation between face
components in a face image pair? However, most existing

methods are not designed for the face components of kin-

ship recognition. To solve this, we propose the Face Com-
ponential Relation (FaCoR) module, which can embed the

relation information between face components into kinship

feature representations, as the core component of our Fa-

CoRNet (Fig. 2).

We denote the input face image pair as (Ia, Ib) ∈
R

h×w×3, the extracted feature maps from the backbone’s

middle-layer as (Xa,Xb) ∈ R
H×W×C , and the high-level

features from the backbone’s final layer as (ra, rb) ∈ R
C ,

where H , W , and C represent the height, width, and the

channel number of feature maps, respectively. The pro-

posed FaCoR module mainly serves two purposes: 1) To

adaptively learn the correlation between face image pairs,

and 2) to learn the dependencies in face components be-

tween image pairs. These two directions help to learn which

facial parts are important for kinship recognition. More

specifically, We first extract features (Xa,Xb) from the

shared-weights backbone and then use 1 × 1 convolution

Conv to extract two intermediate flattened feature vectors

(Fa,Fb) = (Conv1×1(X
a),Conv1×1(X

b)) ∈ R
H×W×C .

Then, we find wide-range dependencies between the flat-

tened feature vector pair (Fa,Fb) and estimate the cross-

attention map β as:

βj,i =
exp(sij)∑N
i=1 exp(sij)

, sij = (Fa
i )

TFb
j , (1)

where βj,i estimates model attention in the i-th location of

the j-th region.

We then multiply each output of the attention map β with

the feature map (Xa,Xb) and adopt a learnable γ-scaled

residual connection to obtain the cross-attention features

(Oa,Ob) ∈ R
C×HW , given by:

(
Oa

j , O
b
j

)
=

(
Xa + γ

N∑
i=1

βj,iX
a
i , X

b + γ
N∑
i=1

βj,iX
b
i

)
.

(2)

All the operations are differentiable since they are purely

linear and properly reshaped.

To effectively fuse the information from the cross-

layer features, including high-level features (ra, rb) and the

cross-attention features
(
Oa,Ob

)
, we adopt Channel In-

teraction (CI) blocks that encode inter-channel relations as

shown in the gray block in Fig. 2. CI computes the interac-

tion weights w via two sets of 1×1 convolution, a sigmoid,

and a ReLU activation function as follows:

w = σ (Conv1×1 (δ (Conv1×1(x̂)))) , (3)

where Conv1×1(·) is a 1 × 1 convolution operation, σ is

the sigmoid operation, and δ is the ReLU operation. x̂ de-

notes the input to the CI block, where the elements in x̂ are

multiplied element-wise with their corresponding weights

to produce a set of weighted feature values wx̂. Finally,

the outputs of the FaCoR module (xa
out,x

b
out) are gener-

ated by fusing the information of cross-layer features via

the Channel Interaction blocks as follows:

(
xa
out,x

b
out

)
=

(
CI (CI (Oa) || ra) ,CI

(
CI

(
Ob

) || rb)) ,
(4)

where the operation || denotes the concatenation of two fea-

ture maps in the channel dimension.

3.2. Relation-Guided Contrastive Learning

Contrastive learning [2, 16] is known as an effective rep-

resentation learning approach. It allows the model to learn

the discriminative features from data similarities and dis-

similarities, even without labels. The supervised contrastive

[40] approach learns more robust features in kinship recog-

nition, achieving state-of-the-art performance. The main

idea of contrastive learning is to learn the discriminative

feature, where feature representations of kin relations in

feature space would be close. Otherwise, the feature repre-

sentations of non-kin relations in feature space are far apart.
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Figure 2. An overview of the proposed Face Componential Relation Network (FaCoRNet) consisting of a backbone and the Face Compo-

nential Relation (FaCoR) module (Sec. 3.1), trained with the Relation-Guided Contrastive Loss L (Sec. 3.2). In the FaCoR module, we

compute the cross-attention features O embedded with face componential relation and then fuse the information from high-level features r
via Channel Interaction (CI) blocks. During training, the attention map β is adopted as the guidance to learn discriminative representations.

For the standard contrastive learning, given N positive sam-

ples (xi, yi), the contrastive loss L is given by:

L =
1

2N

N∑
i=1

(Lc(xi, yi) + Lc(yi, xi)) (5)

and Lc(xi, yi) is defined as:

Lc(xi, yi) = −log
esim(xi,yi)/τ∑N

j=1 [j �=i](esim(xi,xj)/τ + esim(xi,yj)/τ )
,

(6)

where [j �=i] ∈ {0, 1} represents an indicator function that

evaluates to 1 iff j �= i, the negative samples are generated

by incorporating positive from different kinship categories

(i.e., (xi, xj)), and sim(x, y) is the cosine similarity opera-

tion between x and y.

However, the kinship recognition performance of con-

trastive learning is sensitive to hyper-parameter τ [40],

which controls the degree of penalty for hard samples.

To solve this problem, we propose the Relation-Guided
Contrastive Loss (Rel-Guide) with a relation indicator M,

which guides the contrastive loss with the cross-attention

estimation instead of heuristic tuning, as shown in Fig. 2.

The main idea is that a smaller value from the cross-

attention map needs a greater degree of penalty for hard

samples. In other words, the small correlation between im-

age pairs in kin relation needs a greater degree of penalty.

This idea is also similar to updating the network with a large

gradient to improve kinship recognition performance, and

vice versa. Therefore, we extract the cross-attention map

β in Eq. 1, which corresponds to the face component cor-

relation between image pairs. Then, we utilize the relation

indication function M to estimate the similarity value ψ to

replace the fixed value τ in Eq. 7 as:

Lc(xi, yi) = −log
esim(xi,yi)/ψ∑N

j=1 [j �=i](esim(xi,xj)/ψ + esim(xi,yj)/ψ)
,

(7)

where ψ = M(β)/s, s is the scale value, and we adopt

the global sum pooling operation as the relation indicator

M. We refer to the contrastive learning approach [40], the

hyper-parameter τ mostly lies in the range of 0.08-0.1 for

stable training. Therefore, the scale value s in Rel-Guide is

set to let the value learned adaptively within this range. In

our FaCoRNet, the feature pair (x, y) in the loss function Lc

uses the output feature pairs (xa
out,x

b
out) from Face Com-

ponential Relation to calculate loss for updating the model.

For the inference, we follow Contrastive [40] to extract

the final outputs (xa
out,x

b
out) from Eq. 4 to calculate the

cosine similarity, and then predict whether there is a kinship

relation between them with thresholding.

4. Experiments
4.1. Datasets and Evaluation

The compared methods are trained and tested on three

publicly available kinship recognition datasets: Families in
the Wild (FIW) [26], and KinFaceW-I and II [22].

The FIW dataset is the largest kinship recognition

dataset which includes 1000 different and disjoint family

trees, around 12000 family photos, and 11 kin relationship
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Method BB SS SIBS FD MD FS MS AVG.

(a) Pre-trained model: ArcFace [8]

Stefhoer† [13] 0.660 0.650 0.760 0.770 0.770 0.800 0.780 0.740

DeepBlueAI† [23] 0.770 0.770 0.750 0.740 0.750 0.810 0.740 0.760

Ustc-nelslip† [36] 0.750 0.740 0.720 0.760 0.750 0.820 0.750 0.760

Vuvko† [30] 0.800 0.800 0.770 0.750 0.780 0.810 0.740 0.780

Contrastive [40] 0.803 0.829 0.794 0.753 0.803 0.823 0.751 0.793

FaCoRNet (Ours) 0.820 0.833 0.810 0.773 0.804 0.826 0.788 0.806
(b) Pre-trained model: AdaFace [17]

Contrastive [40] (naive) 0.630 0.776 0.731 0.663 0.687 0.736 0.687 0.728

Contrastive [40] 0.821 0.831 0.798 0.766 0.806 0.828 0.767 0.802

FaCoRNet (Ours) 0.832 0.836 0.824 0.795 0.818 0.848 0.802 0.820

Table 1. The state-of-the-art performance comparison of Kinship Verification on FIW dataset by two pre-trained backbones: (a) ArcFace

[8] and (b) AdaFace [17]. The best and second results in each column are in bold and underline, respectively. †The results are from [26].

types. All face images are cropped to the size of 112× 112
with face detection and alignment in training and testing by

MTCNN [39]. The 11 kin relationship types include: a) Sib-
lings: Brother-Brother (BB), Sister-Sister (SS), and Sister-

Brother (SIBS); b) Parent-Child: Father-Daughter (FD),

Mother-Daughter (MD), Father-Son (FS), and Mother-Son

(MS); c) Grandparent-Grandchild: GFGD, GFGS, GMGD,

and GMGS, with the same naming convention as above. In

this work, we mainly focus on the first 7 kinship relation-

ships since the Grandparent-grandchild categories contain

much smaller data by an order of magnitude. The evaluation

of FIW comprises three tasks: 1) Kinship Verification (one-
to-one): verify the kinship relationship to predict whether

a pair of individuals are blood relatives; 2) Tri-Subject Ver-
ification (one-to-two): the goal is to determine whether a

child is related to a pair of parents; 3) Search and Retrieval
(many-to-many): the goal is to find images in the gallery

(31,787 images) that are most likely to have a kinship with

the probe (190 families). For evaluation, we adopt cosine

similarity and thresholding to calculate accuracy according

to the FIW benchmark [26].

The KinFaceW-I and II datasets are two widely-used

kinship datasets for evaluation, which include 4 kin rela-

tionship types include: Father-Son (FS), Father-Daughter

(FD), Mother-Son (MS), and Mother-Daughter (MD). The

KinFaceW-I dataset contains 134 (FS), 156 (FD), 127 (MS),

and 116 (MD) pairs of parent-child facial images. The

KinFaceW-II dataset consists of 250 pairs of facial images

for each kinship relation. For evaluation, we adopt the five-

fold cross-validation in the experiments following the stan-

dard protocol in GKR [19].

4.2. Implementation Details

For experiments, we select 103784 positive and nega-

tive image pairs overall without non-aligned images for the

training phase and follow the evaluation protocols as de-

tailed in [27] by applying the restricted protocol where the

identities of the subjects in the dataset are unknown, and

we are given predefined pairs of training images, per kin-

ship class. We compare our FaCoRNet against several exist-

ing methods by using ArcFace [8] as the pre-trained back-

bone for a fair comparison. To demonstrate the advanced

face feature representation for kinship recognition, we use

the SOTA face recognition model, AdaFace [17], as the

feature extraction network to compare with SOTA kinship

recognition methods. Since the naive pre-trained weights

of Adaface are not suitable for the kinship method (more

details in Sec. 4.3.1, we modified the initialization model

parameters as a normal distribution, with lower and upper

bound to [-0.05, 0.05] and utilize the L2-norm feature nor-

malization. For the training scheme, we use SGD as the

optimizer with a constant learning rate of 1e-4 and a mo-

mentum of 0.9. The batch size is set as 50, and the models

are trained for 50 epochs. The scale value s in Relation-

Guided Contrastive Loss is set to 500 for stable training.

4.3. Experimental Results

4.3.1 Comparison to SOTA Methods

We first evaluate kinship recognition performance on the

FIW dataset for the three tasks given in the standard pro-

tocol, and compare our method with several state-of-the-art

methods including stefhoer [13], DeepBlueAI [23], Vuvko

[30], Ustc-nelslip [36], and Contrastive [40].

Table 1 compares the Kinship Verification (one-to-one)
accuracy by using two different pre-trained models (i.e., Ar-

cFace and AdaFace) by various methods. The result shows

that the kinship recognition average accuracy from our pro-

posed method is significantly higher than those achieved

by the other methods. For the standard comparison which

adopts Arcface [8] as the pre-trained model, our FaCoR-

Net outperforms previous leading methods Ustc-nelslip,

Vuvko, and Contrastive by 4.6 percent (0.760 → 0.806), 2.6

percent (0.780 → 0.806), and 1.3 percent (0.793 → 0.806),

respectively, as shown in Table 1(a). Then a question arises:

Do advanced face recognition models benefit kinship recog-
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nition? To answer this, we adopt Contrastive [40] as the

strong baseline and exploit AdaFace [17] as pre-trained for

better general initial face representation. However, naively

replacing the pre-trained model with Adaface is not suitable

for kinship recognition, as the average accuracy decrease

significantly (0.793 → 0.728). We then modify the train-

ing scheme as stated in Sec. 4.2 and show that advanced

face recognition models can improve the kinship recogni-

tion task (0.793 → 0.802). Finally, by integrating the mod-

ified AdaFace backbone with our proposed FaCoRNet, the

result is further boosted by 1.8 percent (0.802 → 0.820),

achieving the SOTA performance, as shown in Table 1(b).

Table 2 compares the Tri-Subject Verification (one-to-
two) performance by using the AdaFace to be the pre-

trained model. The results demonstrate that the average ac-

curacy from our FaCoRNet outperforms previous leading

methods DeepBlueAI, Ustc-nelslip, and Contrastive by 8.1

percent (0.770 → 0.851), 6.1 percent (0.790 → 0.851), and

0.7 percent (0.844 → 0.851), respectively.

In the Search and Retrieval (many-to-many) task, the

problem is transformed into a many-to-many verification

task, significantly increasing the task difficulty. We apply

our proposed FaCoRNet model from the kinship verifica-

tion task (i.e., the pre-trained model from AdaFace and train

from the verification task). Table 3 demonstrates that the

search and retrieval performance from our FaCoRNet sig-

nificantly outperforms current SOTA methods Vuvko, Ustc-

nelslip, and Contrastive by 16.2 percent (0.390 → 0.542),

31.2 percent (0.230 → 0.542), and 14.2 percent (0.400 →
0.542), respectively. These results show that the extracted

face componential relation information by our proposed

FaCoRNet substantially benefits the challenging many-to-

many task.

To summarize, our FaCoRNet with the proposed training

scheme significantly outperforms the SOTA methods on all

three tasks in the FIW benchmark, achieving new SOTA

results.

We also evaluate the kinship verification performance

of our method on two widely-used databases: KinFaceW-

I [22] and KinFaceW-II [22], and compare our proposed

FaCoRNet with several state-of-the-art methods including

MNRML [22], MNRML [22], DMML [35], CNN-Basic

[38], CNN-Point [38], D-CBFD [34], WGEML [20], GKR

[19] and Contrastive [40]. Table 4 compares the kinship ver-

ification performance by using the pre-trained ResNet-18 in

various methods. The result shows that the kinship verifica-

tion accuracy from our proposed method is comparable to

or higher than those achieved by the other methods.

4.3.2 Practical Kinship Recognition Protocol

With the improvement of hardware, the photos captured by

cameras or smartphones have better quality, so it is worth

Method FMD FMS AVG.

Stefhoer† [13] 0.720 0.740 0.730

DeepBlueAI† [23] 0.760 0.770 0.770

Ustc-nelslip† [36] 0.780 0.800 0.790

Contrastive [40] 0.824 0.860 0.844

FaCoRNet (Ours) 0.841 0.857 0.851

Table 2. The state-of-the-art performance comparison of Tri-
subject Verification on FIW dataset. The best and second results

are in bold and underline, respectively. †The results are from [26].

Method Rank@5 AVG.

Vuvko† [30] 0.600 0.390

DeepBlueAI† [23] 0.320 0.190

Ustc-nelslip† [36] 0.380 0.230

Contrastive [40] 0.600 0.400

FaCoRNet (Ours) 0.668 0.542

Table 3. The state-of-the-art performance comparison of Search
and Retrieval on FIW dataset. The best and second results are in

bold and underline, respectively. †The results are from [26].

Method FS FD MS MD AVG.

KinFaceW-I

MNRML† [22] 0.725 0.665 0.662 0.720 0.699

DMML† [35] 0.745 0.695 0.695 0.755 0.723

CNN-Basic† [38] 0.757 0.708 0.734 0.794 0.748

CNN-Point† [38] 0.761 0.718 0.780 0.841 0.775

D-CBFD† [34] 0.790 0.742 0.754 0.773 0.785

WGEML† [20] 0.785 0.739 0.806 0.819 0.787

GKR† [19] 0.795 0.732 0.780 0.862 0.792

Contrastive [40] 0.799 0.805 0.835 0.780 0.805

FaCoRNet (Ours) 0.799 0.818 0.839 0.806 0.815
KinFaceW-II

MNRM†L [22] 0.769 0.743 0.774 0.776 0.765

DMML† [35] 0.785 0.765 0.785 0.795 0.783

CNN-Basic† [38] 0.849 0.796 0.883 0.885 0.853

CNN-Point† [38] 0.894 0.819 0.899 0.924 0.884

D-CBFD† [34] 0.810 0.762 0.774 0.793 0.785

WGEML† [20] 0.886 0.774 0.834 0.816 0.828

GKR† [19] 0.908 0.860 0.912 0.944 0.906
Contrastive [40] 0.852 0.898 0.912 0.890 0.888

FaCoRNet (Ours) 0.886 0.922 0.910 0.900 0.906

Table 4. Verification accuracy of different methods on KinFaceW-I

and KinFaceW-II datasets. The best and second results are in bold
and underline, respectively. †The results are from [19].

investigating the impact of using higher-quality face images

in practical applications. We conduct an experiment for

practical kinship recognition as shown in Table 5 (b). More

specifically, we propose a quality-filtered protocol, where

we select high-quality training and testing face images with

SER-FIQ quality scores [33] larger than 0.5. The results

demonstrate that the average accuracy of FaCoRNet are sig-

nificantly higher than the baseline (i.e., Contrastive). This
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Method BB SS SIBS FD MD FS MS AVG.

(a) Standard Protocol

Contrastive [40] 0.803 0.829 0.794 0.753 0.803 0.823 0.751 0.793

FaCoRNet (Ours) 0.832 0.836 0.824 0.795 0.818 0.848 0.802 0.820
(b) Quality-Filtered Protocol (Quality Score > 0.5)

Contrastive [40] 0.800 0.817 0.772 0.739 0.784 0.836 0.786 0.792

FaCoRNet (Ours) 0.836 0.838 0.784 0.784 0.842 0.862 0.815 0.826

Table 5. Performance comparison of kinship on FIW dataset by using AdaFace to be the pre-trained model in two quality-filtered protocols:

(a) standard protocol: use all image pairs without filtering; (b) quality-filtered protocol: select the image pairs with the pair quality scores

larger than 0.5, which is more practical in real-world scenarios.

trend is similar to the standard protocol as shown in Table 5

(a), but the improvement from our method over the baseline

is even more obvious (0.792 → 0.826).

Intuitively, using high-quality face images as training

and testing data would improve overall accuracy. However,

the accuracy of Contrastive [40] does not improve on high-

quality face images, which also confirms that our FaCoR-

Net can learn the correlation between image pairs and fuse

them more effectively, that is, capture the face components

from the eye, nose, and mouth. Besides, we further analyze

the recognition results of different kinships and found that

the accuracy of the same gender (i.e., BB, SS, MD, FS) was

significantly higher. Among them, the result of FaCoRNet +

Rel-Guide in MD case has a significant improvement of 2.4

percent (0.818 → 0.842) from the standard to the quality-

filtered protocol, showing that the MD cases include a large

amount of low-quality face images in the standard protocol.

On the other hand, MD has slightly lower recognition accu-

racy than FS, and we conjecture that it is due to the chal-

lenging MD cases caused by makeup and coverings. More-

over, the accuracy of the SIBS case decreases after selecting

high-quality face images. The main reason is that SIBS has

less data than other kinship categories. Finally, the results

also demonstrate that our FaCoRNet outperforms the SOTA

method by a large margin in all kin categories.

4.3.3 Ablation Studies

Component Analysis: In this section, we conduct an abla-

tion study to analyze the proposed design for comparisons

against various component modules in Kinship Verification,

Tri-subject Verification, and Search and Retrieval tasks on

the FIW dataset, corresponding to task 1, task 2, and task

3, respectively. The two main components in our proposed

FaCoRNet are the FaCoR module and the Rel-Guide loss

function. FaCoR learns to discover important facial compo-

nents to benefit kinship-related tasks, and Rel-Guide facili-

tates training for further improvement, especially for more

challenging tasks. As shown in Table 6, FaCoR consis-

tently improves the baseline for all FIW [28, 26] tasks. For

the most arduous Search and Retrieval task, Rel-Guide can

further boost the accuracy. This was achieved by using

Relation-Guided Contrastive Loss (Rel-Guide) with a re-

lation indicator, which automatically estimate τ value in a

certain range in the contrastive loss instead of heuristic tun-

ing of fixed τ , particularly on the challenging task 3.

Contrastive FaCoR Rel-Guide task 1 task 2 task 3

� 0.793 0.844 0.400

� � 0.803 0.848 0.511

� � � 0.806 0.851 0.542

Table 6. Component analysis of FaCoRNeton the FIW dataset, in-

cluding Kinship Verification, Tri-subject Verification, and Search
and Retrieval tasks, corresponding to task 1, task 2, and task 3,

respectively.

Face Quality Analysis: We perform an experiment to eval-

uate accuracy of applying different methods to face images

with different image qualities. We use SER-FIQ [33] to

compute the face quality scores of all images and adopt the

lower score in a pair as the face-pair quality score. We di-

vide the face-pair quality scores into 5 groups as shown in

Table 7. The results show that in low-quality cases (i.e.,

the quality scores<0.4), the overall recognition accuracy is

lower than those in high-quality cases. The problem is more

severe in extremely low-quality cases (i.e., 0.2). Finally, the

results also demonstrate that our FaCoRNet outperforms

the SOTA method under all different levels of face quali-

ties.

Face-Pair Quality Score Contrastive [40] FaCoRNet (Ours)
0-0.2 0.749 0.794

0.2-0.4 0.782 0.820
0.4-0.6 0.813 0.843
0.6-0.8 0.803 0.821
0.8-1 0.793 0.824
AVG. 0.793 0.820

Table 7. Performance comparison of kinship on FIW dataset under

various groups of pair quality scores. The table represents the pair

quality score in groups from small to large.

Face Verification: We also evaluate face verification per-

formance with two databases: LFW [14] and AgeDB-30

[24], and compare our proposed FaCoRNet with two meth-

ods including the state-of-the-art Contrastive [40] approach
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Method ACC. AUC

(a) LFW dataset

ArcFace-MS1M† [8] 0.998 0.999

Contrastive [40] 0.993 0.998

FaCoRNet (Ours) 0.995 0.999

(b) AgeDB-30 dataset

ArcFace-MS1M† [8] 0.980 0.991

Contrastive [40] 0.965 0.989

FaCoRNet (Ours) 0.970 0.989

Table 8. The results of Face Verification comparison on LFW and

AgeDB-30 dataset. †The upper-bound of the face verification.

and the regular face recognition model (Arcface-MS1M

[8]). The regular face recognition model of Arcface-MS1M

is trained by using the MS1MV3 [25] database, which rep-

resents the upper bound of face recognition. As shown in

Table 8, the results show that the face verification perfor-

mance of our proposed method is significantly higher than

the Contrastive scheme. It demonstrates that our proposed

method not only learns the discriminative feature of kinship

recognition but also retains the identity information.

Visualization: We also perform visual analysis on the la-

tent features learned by our proposed model, as shown in

Fig. 3. We select 5 families from the FIW validation set and

visualize the distribution by using t-SNE. We observe that

members of the same family are close to each other, while

there are gaps between members of different families. It

indicates the discriminative ability of our kinship model.

Besides, Fig. 4 visualizes the cross-attention map β pro-

duced by our proposed model from Eq. 1. The visualization

results demonstrate that our proposed method FaCoRNet at-

tains higher values in the face components, particularly in

the regions of the eye, nose, and mouth where there is a

high degree of similarity, and where the covering is skipped.

These findings substantiate that our FaCoRNet method can

effectively learn the relevance of the face components in im-

age pairs through cross-attention estimation, and can adap-

tively acquire critical face components for accurate kinship

recognition. Different from many existing works which also

utilize relation information between face components, we

do not manually define partitions of the face regions. In-

stead, our FaCoR and supervised loss let the network au-

tomatically focus on the important regions that can bene-

fit kinship tasks by modeling the relation between regions.

Therefore, the focused regions are not always identical but

could be different areas (e.g., cheek, forehead), depending

on the input face pair.

5. Conclusion and Future Work

In this paper, we propose a novel Face Componential
Relation Network (FaCoRNet) for kinship recognition. Fa-

CoRNet is an attention-based model designed for learn-

ing correlation between image pairs in terms of face com-

Figure 3. Visual analysis of the learned feature with t-SNE.

Figure 4. Illustration of Cross-Attention map includes kin (first to

third rows) and non-kin (fourth to sixth rows) cases: the left side

shows the raw image pairs and the right side shows the visualiza-

tion of the cross-attention maps.

ponents. To better address large variations in facial ap-

pearance, FaCoRNet utilizes the Face Componential Rela-
tion (FaCoR) module to achieve not only adaptive learning

correlation between image pairs but also learning important

face components for kinship recognition. In addition, we

embed the cross-attention estimation as a relation indica-

tor to guide the regular contrastive loss without the need for

heuristic tuning. Experimental results show that our method

achieves SOTA performance on multiple kinship recogni-

tion benchmarks, including the FIW benchmark. Moreover,

for practical kinship recognition protocol, FaCoRNet also

outperforms the SOTA methods by large margins. We be-

lieve that FaCoRNet can be served as a strong baseline for

further advancing facial relation learning approaches in kin-

ship recognition. For future work, we plan to incorporate

face quality scores into the training process, aiming to mit-

igate the issues from low-quality face images. We would

also like to incorporate multi-modal information (e.g., text,

metadata) to compensate for the vision-based methods.
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