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1. Overview
The supplementary material contains more ablation stud-

ies, which are organized into the following sections:

• Section 2: Pyramid Layers

• Section 3: Cross-fusion Mechanism

• Section 4: Model Size and FLOPs Comparison

• Section 5: Transformer encoders depth.

• Section 6: Confusion Matrices

2. Pyramid Layers:
To investigate the optimal pyramid layers with embed-

ded dimensions, we conduct the experiments on the RAF-
DB dataset and the results are shown in Table 1. The three
pyramid layers with embedded dimensions [512, 256, 128]
achieve similar results to the four pyramid layers with em-
bedded dimensions [512, 256, 128]. Considering the com-
putational budget, POSTER adopts the three pyramid layers
with embedded dimensions [512, 256, 128] as the optimal
choice.

Table 1: Ablation study on the Pyramid Layers.

RAF-DB
layers Acc mAcc
[512] 91.63 85.01
[512, 256] 91.77 85.49
[512, 256, 128] 92.05 86.03
[512, 256, 128, 64] 92.04 85.97

3. Cross-fusion Mechanism
For POSTER, we swap Qimg and Qlm for cross fusion

during transformer attention for each MSA block. Image
features can be guided by some prior knowledge of salient

Table 2: Ablation study on Cross-fusion Mechanism.

RAF-DB
Acc mAcc

No swap 91.27 85.66
swap for the first block 91.68 85.71
swap for the first two blocks 91.89 85.88
swap for the first four blocks 91.91 85.86
swap for all 8 blocks 92.05 86.03

regions from the landmarks. Likewise, the landmark fea-
tures are provided with additional global context from the
image features. In this way, we foster improved contextual
understanding to alleviate intra-class discrepancy and inter-
class similarity. We also conduct experiments to evaluate
different cross-fusion mechanisms in Table 2. Based on the
results, swapping Qimg and Qlm for all blocks achieves the
best performance.

4. Model Size and FLOPs Comparison:
Previous methods did not pay much attention to the

model’s computational and memory complexity. The to-
tal number of parameters (Params) and floating-point op-
erations (FLOPs) of the model are two key characteristics
for a fair comparison, but are often neglected. Further-
more, many recent papers did not release their implemen-
tation code. Here we list the Params and FLOPs of DMUE
[3] (estimated based on their released code) and TransFER
[4] (provided by the author) compared with our POSTER
in Table 3. We introduce three versions of our POSTER:
POSTER-T (tiny version, the depth of transformer encoders
is 4), POSTER-S (small version, the depth of transformer
encoders is 6), and POSTER (the depth of transformer en-
coders is 8). The Params and FLOPs of the image backbone
and landmark detector are included for our methods.

POSTER-T has lower Params and similar FLOPs com-
pared with DMUE [3], but POSTER-T has much better per-
formance both on RAF-DB and AffectNet datasets. When
comparing with TransFER [4], POSTER-T outperforms



Table 3: Comparison on Parameters and FLOPs. The image backbone (IR50) and facial landmark detector (MobileFaceNet)
are taken into account when computing Params and FLOPs of POSTER-T, POSTER-S, and POSTER.

Methods Year Params FLOPs Acc(RAF-DB) Acc(AffectNet)
DMUE[3] CVPR 2021 78.4M 13.4G 89.42 63.11

TransFER[4] ICCV 2021 65.2M 15.3G 90.91 66.23
POSTER-T - 52.2M 13.6G 91.36 66.86
POSTER-S - 62.0M 14.7G 91.54 67.13
POSTER - 71.8M 15.7G 92.05 67.31

Table 4: The trade-off between the complexity versus the performance of POSTER.

transformer blocks overall (with backbones) RAF-DB AffectNet 7cls
# of blocks emb dim Params(M) FLOPs (G) Params(M) FLOPs (G) Acc Acc

Image only 8 (single ViT) 512 19.7 2.4 50.8 13.1 90.51 65.35
POSTER-T 4 (Cross-Fusion) 512 19.7 2.4 52.2 13.6 91.36 66.86
POSTER-S 6 (Cross-Fusion) 512 29.5 3.5 62.0 14.7 91.54 67.13
POSTER 8 (Cross-Fusion) 512 39.3 4.5 71.8 15.7 92.05 67.31

TransFER for all aspects. If the goal is to pursue higher
performance, POSTER would be a good choice since com-
putational and memory complexity is similar to other meth-
ods while achieving higher accuracy.

To investigate the trade-off between complexity versus
performance, we show the complexity metrics in Table 4.
When only using image features modeled by conventional
transformer encoders, the Accuracy is 90.51 % on RAF-DB
and 65.35 % on AffectNet 7cls. Within the same compu-
tational budget of transformer blocks and a similar overall
computational budget, POSTER-T outperforms image only
case on both RAF-DB and AffectNet datasets. POSTER-
T, POSTER-S, and POSTER have identical image back-
bone and landmark detector. The only difference between
POSTER-T, POSTER-S, and POSTER is the number of
transformer blocks. POSTER achieves the best results with
8 cross-fusion transformer blocks.

5. Transformer encoders depth:
In Fig. 1, we plot relations between the accuracy with

the network depth. When the number of transformer en-
coders is greater than 4, the performance is at a relatively
high level on both RAF-DB and AffectNet datasets. We
choose the depth number to be 8 in our final architecture
since this provides the best results.

6. Confusion Matrices:
We show the confusion matrices of the baseline method

and the proposed POSTER on RAF-DB, AffectNet (7 cls),
and AffectNet (8 cls) datasets in Fig. 2 (a) and (b).

Compared with the baseline, POSTER significantly im-
proves the class-wise accuracy (diagonals of each confu-

Figure 1: Evaluation of different numbers of trans-
former encoders (depth) on RAF-DB and AffectNet (7 cls)
datasets.

sion matrix) on all three experiments in Fig. 2 which in-
dicates that POSTER reduces intra-class discrepancy for
FER. Given the target categories, the error rate of predicting
into wrong categories also decreases most of the cases when
comparing the same positions (except diagonals of each
confusion matrix) between Fig. 2 (a) and (b), which shows
that POSTER alleviates inter-class similarity for FER.



(a) The confusion matrices of our baseline on RAF-DB, AffectNet (7 cls), and AffectNet (8 cls) 

(b) The confusion matrices of  POSTER on RAF-DB, AffectNet (7 cls), and AffectNet (8 cls) 

Figure 2: Confusion matrices of our baseline (a) and Poster (b) on RAF-DB [1], AffectNet-7cls [2], and AffectNet-8cls [2]
datasets
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