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Abstract
Following their success in visual recognition tasks, Vi-

sion Transformers(ViTs) are being increasingly employed
for image restoration. As a few recent works claim that ViTs
for image classification also have better robustness proper-
ties, we investigate whether the improved adversarial ro-
bustness of ViTs extends to image restoration. We consider
the recently proposed Restormer model, as well as NAFNet
and the “Baseline network” which are both simplified ver-
sions of a Restormer. We use Projected Gradient Descent
(PGD) and CosPGD for our robustness evaluation. Our
experiments are performed on real-world images from the
GoPro dataset for image deblurring. Our analysis indicates
that contrary to as advocated by ViTs in image classifica-
tion works, these models are highly susceptible to adver-
sarial attacks. We attempt to find an easy fix and improve
their robustness through adversarial training. While this
yields a significant increase in robustness for Restormer, re-
sults on other networks are less promising. Interestingly, we
find that the design choices in NAFNet and Baselines, which
were based on iid performance, and not on robust general-
ization, seem to be at odds with the model robustness.

1. Introduction
The goal of image restoration is to recover high-quality

images from degraded observations. The degradation could

be due to a variety of factors such as noise, blur, artifacts

due to jpeg compression, raindrops, haze, and other fac-

tors. Earlier methods for image restoration [39, 6, 11, 14, 3]

employed carefully chosen priors and degradation models

to derive degradation-specific restoration algorithms. Yet,

such methods are limited by the strength of the image prior

and the accuracy in modeling or estimating the degradation

operator. The past decade saw a large-scale adoption of
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Figure 1. Comparing images reconstructed by all considered mod-

els after 5 iterations of CosPGD attack . We observe strong spec-

tral artifacts in the reconstructed images.

deep learning methods to image restoration [45], which out-

performed the classical approaches[31]. Recent approaches

[62, 55, 50] successfully adopt novel architectures such as

Transformers [52, 16] and MLP-mixers [48] for restoration.

Yet, CNNs, MLP-mixers as well as Transformer have

been shown to be vulnerable to carefully crafted adversarial

examples [32, 18]. Recent work [1, 9, 58, 17] also confirms

the existence of such vulnerabilities in deep learning-based

image restoration. Yet, existing works mainly analyze the

robustness of CNN-based restoration methods. Conversely,

with the introduction of novel network architectures such

as vision Transformers [29, 16], MLP mixers [48], and im-

proved convolutional architectures [30, 26] which outper-

form the earlier networks such as ResNets [21], there have

been several studies on the robustness of these new architec-

tures [5, 42, 47, 13, 1]. To the best of our knowledge, very

limited works [13, 4] investigate the effect of architectural

components and training recipes. Existing works focus on

image classification and do not study restoration.

Thus to bridge this gap, in this work, we study the ad-
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the final published version of the proceedings is available on IEEE Xplore.
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versarial robustness of Transformer based restoration net-

works. These networks include, Restormer [62], and two

architectures introduced in [7] the Baseline network and

the Non-linear Activation free Network (NAFNet), both ob-

tained by simplifying the original Restormer, with mod-

ifications to the channel attention and activation func-

tions. Further, to better understand the architectural design

choices made by [7], we include an Intermediate network
also considered by [7] which serves as a step between the

Baseline network and NAFNet. This study is particularly

interesting as recent works [57, 4] indicate that the choice of

activation function significantly impacts adversarial robust-

ness. We study the network robustness under standard and

adversarial attacks, by considering �∞ perturbations crafted

using PGD attack [32] and CosPGD attack proposed in [1]

for dense prediction tasks. We conduct our experiments on

dynamic deblurring using the Go-Pro dataset [35].

Our experiments reveal that under standard training set-

tings, Transformer based restoration networks are not robust

to adversarial attacks in general. As shown in Figure 1, the

networks also exhibit distinct artifacts in the reconstructions

under attack. The images from the Baseline network and

the Restormer exhibit severe ringing artifacts [34], whereas

the NAFNet reconstructs images with very strong grid and

color artifacts under adversarial attack. We find that adver-

sarial training can largely reduce the artifacts and signifi-

cantly improve the robustness of all three networks. How-

ever, the recently proposed NAFNet and Baseline network

fail to rival the performance of Restormer, which leads us to

contemplate the importance of the architectural components

necessary to achieve robust generalization.

The main contributions of this work can be summarized

as follows:

• We investigate the robustness of recently proposed

Transformer based architectures for image restoration,

namely image deblurring.

• We analyze the quality of the restored images and the

spectral artifacts introduced by models under the afore-

mentioned adversarial attacks.

• We understand the effects of defense strategy against

adversarial attacks that consequently reduce the spec-

tral artifacts in reconstructed images.

• Lastly, we study the effect of certain architectural de-

sign choices in the recently proposed state-of-the-art
image restoration model, NAFNet, to improve their ro-

bustness.

2. Related Work
Transformers for Image Restoration The past decade

saw significant improvements in image restoration, largely

owing to the adoption of deep networks trained on large

datasets of clean and degraded images. While earlier

restoration networks largely adopted CNN-based architec-

tures, subsequent works also explored the use of attention

mechanisms inside CNNs [63, 36, 46]. We refer [45] for

a detailed survey on deep learning approaches to restora-

tion. More recently, vision Transformers [29, 16] are in-

creasingly adopted for several restoration tasks. While [27,

62, 55, 12, 56] adopt Transformers for generic restoration

tasks, a few works focus on specific restoration tasks by

including such as deblurring [49], deraining [28], dehaz-

ing [20, 44], removing degradations due to adverse weather

conditions [51]. These networks typically employ encoder-

decoder-based architectures with Transformer blocks com-

bined with convolutions.

Adversarial Robustness of Image Restoration. While

the adversarial robustness of deep networks for image

recognition is extensively studied, a few works also study

the robustness of image restoration networks to adversarial

attacks. [9, 10, 61] evaluate adversarial robustness of deep

learning-based image super-resolution. While [10] propose

adversarial regularization, [61] propose frequency domain

adversarial example detection, combined with random fre-

quency masking to improve robustness. [17] evaluate ad-

versarial robustness of deblurring networks with and with-

out the knowledge of the blur operator, and introduce tar-

geted attacks on restoration. In [8], the adversarial robust-

ness of image-to-image translation models is studied, in-

cluding restoration tasks, and adversarial training and dif-

ferent transformation-based defenses are evaluated. Yan

et al. [58] investigate the robustness of image denoising

to zero-mean adversarial perturbations and propose train-

ing with clean and adversarial samples to improve robust-

ness. Yu et al. [60] investigate adversarial robustness of

deep learning-based rain removal, and study the effect of

architecture and training choices on robustness. Yet, these

works do not focus on the more recent Transformer based

restoration networks. With the notable exception of [1],

where they simply benchmark the adversarial performance

of the image restoration networks recently proposed by [7].

Robustness of Transformers & other modern architec-
tures. Recently, Vision Transformers (ViTs) [16, 29]

have been successfully applied to image recognition, out-

performing the older ResNets. Follow-up works modified

training schemes and architectures leading to better per-

forming CNN architectures such as ConvNext [30], and

hybrid models combining components of ViTs and CNNs

[2]. Following the introduction of these novel architectures,

several works examined the robustness properties of these

models. [43, 5, 42, 37] suggest Transformers have better

adversarial robustness than CNNs. However, [33] shows
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that vision Transformers are also as vulnerable as CNNs un-

der strong attacks. [4] show that CNNs can achieve similar

adversarial robustness as Transformers when trained using

similar training recipes, yet Transformers still outperform

CNNs on out-of-distribution generalization. [47] bench-

mark for robustness dependent on the network architecture.

They find that Transformers are best suited against adver-

sarial attacks while being extremely vulnerable to common

corruptions [22] and system noise. Conversely, CNNs are

more robust against common corruptions and system noise

while being weakest against adversarial attacks. Further,

they show that MLP-Mixers are not the best and also not

the worst for both cases.

In their work, [38] benchmark the robustness of state-

of-the-art Transformers and CNN architectures and show

that CNNs using ConvNext architecture can be at least as

robust as Transformers for image recognition. Meanwhile

[13] analyzes the effect of different architectural compo-

nents such as patches, convolution, activation, and attention,

and demonstrates that ConvNexts have better adversarial ro-

bustness than ResNets. [57] observe that smooth activation

functions improve adversarial training as they enable better

gradient updates to compute harder adversarial examples.

Subsequent works [4, 13] also confirm improvement in ro-

bustness when GELU [23] activation functions are used in

adversarial training. While [4] attribute significant robust-

ness gains in Transformers to the self-attention mechanism,

[53] identify other architectural components, including, the

use of patches, larger kernels, reducing activation and nor-

malization layers which when incorporated into CNNs lead

to out of distribution robustness at least on par with Trans-

formers without the use of attention.

In contrast, our work focuses on the investigation of the

robustness of several recent Transformer based restoration

models and shows interesting effects of adversarial attacks

that can be attributed to different building modules of such

models.

3. Methodology
Following, we describe the attack framework used and

the defense strategy used to combat the vulnerabilities of

the architectures exposed by the adversarial attacks.

3.1. Attack Framework

Let x denote the ground-truth image, which is corrupted

by a possibly non-linear degradation operator A, resulting

in an observation yclean, which can be expressed as

yclean = A(x). (1)

Let Gθ be a (Transformer-based) neural network parameter-

ized by θ trained to recover x from yclean. In this work, we

are interested in studying the stability of Gθ to adversarial

attacks that aim to degrade its performance through visually

imperceptible changes to the inputs [18, 32]. We evaluate

the robustness against attacks using additive perturbations δ
with �p-norm constraints. We generate the adversarial per-

turbations based on two powerful attack methods CosPGD

[1] developed for dense prediction tasks, and PGD attack

[32], both of which we detail in the following. The objec-

tive of the attack is to maximize the deviation of the network

output from the ground truth as measured by a loss function

L, subject to �p norm constraints on the perturbation:

maximize
δ

L(Gθ(y
clean + δ), x) s.t. ‖δ‖p ≤ ε. (2)

Please refer to Section A for details of the attack formula-

tions.

3.2. Architectures: from Restormer to NAFNet

We evaluate the adversarial robustness of

Restormer [62], a Transformer based architecture for

image restoration and two architectures introduced in [7]

by modifying the Restormer architecture. Restormer [62]

has a UNet [40] like encoder-decoder architecture, using

multi-head channel-wise attention modules, gated linear

units [15] and depth-wise convolutions in the feed-forward

network. This network achieved state-of-the-art perfor-

mance in image restoration at the time of its publication.

The authors in [7] investigate whether it is possible to

retain the performance of Restormer, with a simplified

architecture. After a thorough ablation study, they propose

a simplified Baseline network that improved upon the

SotA performance. The Baseline network utilizes GELU

activations [23] and replaces multi-headed self-attention in

[62] with a channel attention module [25]. Without loss in

i.i.d. performance, they further simplify this architecture by

removing activation functions altogether, replacing GELU

with a simple gate which performs element-wise product

of feature maps, and replacing the channel attention by

a simplified channel attention without activation func-

tions. The resulting network is referred to as a Nonlinear

Activation-Free Network (NAFNet). In contrast to [7] who

focus on performance with clean inputs, we analyze the

adversarial robustness of these networks, which also allows

us to evaluate the effect of different activation functions

and attention mechanisms on the robustness of restoration

transformers. In Figure 1, we observe that NAFNet has

significantly different artifacts in the reconstructed images

compared to Restormer and the Baseline network. One

might simply hypothesize that these strange artifacts which

appear to be the cumulative effect of aliasing and color

mixing are due to the use of ‘Simple Gate’ in place of

a non-linear activation function like GELU. To confirm

this hypothesis we additionally consider an Intermediate
network, from [7]. In this Intermediate network we replace

the channel attention in the baseline network with the
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Figure 2. Modified visualization of repeating blocks of the architectures from [7] including the considered Intermediate network from [7]

(please refer to (c)) and Intermediate + ReLU network (please refer to (d)).

simplified channel attention but retain the GELU activation.

Additionally, to better understand the role of non-linear

activation functions in this context, we consider an ar-

chitecture the same as the Intermediate network but with

ReLU activations instead of GELU. In Figure 2, we modify

the visualization by [7], to present the repeating blocks of

all the considered architectures in our work.

3.3. Defenses

As discussed in Section 1, we observe in Figure 1 that

all considered architectures are vulnerable to adversarial at-

tacks. Prior work [18, 32, 19] has shown that adversarial

training is an effective defense against adversarial attacks.

Thus we use adversarial training as a defense strategy.

Adversarial Training. We use the FGSM attack as pro-

posed by [18] to generate adversarial samples during train-

ing. Adversarial training can be hypothesized as a min-max

problem, where we try to find perturbations for the samples

such that the loss is maximized while training the network

on these samples to minimize the loss of the model over

training iterations. PGD attack is essentially a multi-step

extension of FGSM attack, and thus the loss that FGSM at-

tack attempts to maximize remains the same. Additionally,

the attack step of FGSM is also the same as described in

Section 3.1, with one notable difference being that in the

case of an FGSM attack, the attack step size α is equal to

the permissible perturbation size of ε.
While training, to avoid over-fitting to adversarial sam-

ples, and enable the model to make reasonable reconstruc-

tions on unperturbed samples we use the training regime

similar to [19] and use only 50% of the sample in the train-

ing batch to generate perturbed adversarial samples and use

the other 50% samples unperturbed. Thus, the effective

learning objective is as described by Equation 3.

minimize
θ

∑

i

L(Gθ(y
cleani), xi) +

∑

j

L(Gθ(y
advj ), xj)

(3)

where the indices i and j correspond to the examples from

the clean and adversarial batch splits, and FGSM adversar-

ial examples are generated as:

yadvj = φr(ycleanj + φε(ε · sign∇yj
L(Gθ(yj),xj))) (4)

4. Experiments
In this work on image restoration, we focus on recon-

structing deblurred images using a few recently proposed

image restoration networks.
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4.1. Experimental Setup

Networks. We consider Restormer proposed by [62],

and Baseline network and NAFNet proposed by [7] with

width 32. For understanding the design choices that lead

to NAFNet producing reconstructed images with signifi-

cantly different spectral artifacts than the other considered

networks, we also consider an Intermediate network and In-
termediate + ReLU. This Intermediate network with width

32 has also been considered by [7] when discussing design

choices to arrive from the Baseline network to NAFNet.

These networks are similar to the Baseline, except it has

the “simplified channel attention” as proposed by [7] rather

than the “channel attention” used in the Baseline network.

We visualize all the considered architectures in Figure 2.

Dataset. For our experiments we use the GoPro im-

age deblurring dataset[35]. This dataset consists of 3 214

real-world images with realistic blur and their correspond-

ing ground truth (deblurred images) captured using a high-

speed camera. The dataset is split into 2 103 training images

and 1 111 test images.

Metrics. We report the PSNR and SSIM scores of the

reconstructed images w.r.t. to the ground truth images, av-

eraged over all images. PSNR stands for Peak Signal-to-

Noise ratio, a higher PSNR indicates a better quality image

or an image closer to the image to which it is being com-

pared. SSIM stands for Structural similarity[54]. A higher

SSIM score corresponds to better higher similarity between

the reconstruction and the ground-truth image.

Training Regimes. For Restormer and its adversarial

training counterpart (‘+ADV’) we follow the training pro-

cedure used by [62] except due to computational limitations

we do not train on the last recommended patch size 384. For

the Baseline network, NAFNet, and its counterparts we fol-

low the training regime used by [7].

Adversarial Training. We used FGSM [18] adversarial

training for efficiency. The maximum allowed perturbation

for the adversaries is set to ε = 8
255 . We use ‘+ADV’ after

the model name to denote that the model has been trained

with FGSM adversarial training.

Adversarial Attacks. We consider PGD and CosPGD

attacks. Following the procedure by [1], we use ε ≈ 8
255 ,

α(attack step size)= 0.01. We consider attack iterations ∈
{5, 10, 20} for our attacks. We use MSE loss for generating

adversarial samples for all networks.

4.2. Results

The good performance of image restoration models on

unperturbed samples is indubitably essential for possible

real-world applications. However, the generalization ability

of these models to perturbed samples has to be better under-

stood for their reliability in safety-critical applications such

as medical imaging, autonomous driving, etc. To this effect,

we study the performance of the considered networks on

Table 1. Performance of the different considered networks and

their counterparts on clean (unperturbed) GoPro test images.

While NAFNet has highest PSNR value, Restormer is slightly bet-

ter in terms of SSIM. All models slightly suffer from adversarial

training when evaluated on clean data, which is to be expected.

Architecture PSNR SSIM

Restormer 31.99 0.9635
+ ADV 30.25 0.9453

Baseline 32.48 0.9575

+ ADV 30.37 0.9355

NAFNet 32.87 0.9606

+ ADV 29.91 0.9291

both clean (unperturbed) and adversarial (perturbed) sam-

ples. Further, to overcome the observed shortcomings of

these models, we harden them using adversarial training.

As observed in Figure 1, under adversarial attack both

Restormer and Baseline network induce ringing-like arti-

facts in the restored images. However, NAFNet introduces

aliasing like grid artifacts and color mixing in the restored

images. We report the performance of three networks along

with adversarial training over clean images in Table 1. Fur-

ther, to study the generalization ability of these networks we

adversarially attack the networks and report the findings in

Table 2.

With standard training protocol, Restormer is marginally

more robust in comparison to the Baseline network with

fewer attack iterations, however, this difference reduces as

the number of attack iterations increases. With adversarial

training using FGSM adversarial examples, we observe im-

provement in the robustness of all three networks. Interest-

ingly, the gain in performance of Restormer when trained

with FGSM is significantly better than that of the Base-

line network and NAFNet. This indicates that Restormer

has a much higher potential of being generalizable than

both the Baseline network and NAFNet. This raises doubts

over the claims by [7] regarding the Baseline network and

NAFNet having “comparable or better performance” to the

recent state-of-the-art image restoration models. Their

claim holds true for clean samples, however with just slight

perturbation (ε = 8
255 ), the performance of their proposed

models drops significantly. Contrary to this, Intermedi-
ate+ReLU is significantly more robust, across attack iter-

ations. We discuss this further in Section 5.1.

At first, one might overlook this shortcoming, how-

ever, when considering safety-critical real-world applica-

tions like those in the medical domain for deblurring MRI

images, or in autonomous driving, such shortcomings could

be very hazardous. This is further highlighted in Figure 3

as we observe that both the Restormer and the Baseline

network introduce ringing artifacts in the reconstructed im-

ages, however, NAFNet introduces very strong aliasing and
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Table 2. Comparison of performance of the considered models against CosPGD and PGD attacks with various attack strengths. Attack

strength increases with the number of attack iterations (itrs). Note that Intermediate + ReLU achieves reasonably robust results entirely

without adversarial training. Please refer to Table A1for further results.

Architecture

CosPGD PGD

5 attack itrs 10 attack itrs 20 attack itrs 5 attack itrs 10 attack itrs 20 attack itrs

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Restormer 11.36 0.3236 9.05 0.2242 7.59 0.1548 11.41 0.3256 9.04 0.2234 7.58 0.1543

+ ADV 24.49 0.81 23.48 0.78 21.58 0.7317 24.5 0.8079 23.5 0.7815 21.58 0.7315

Baseline 10.15 0.2745 8.71 0.2095 7.85 0.1685 10.15 0.2745 8.71 0.2094 7.85 0.1693

+ ADV 15.47 0.5216 13.75 0.4593 12.25 0.4032 15.47 0.5215 13.75 0.4592 12.24 0.4026

NAFNet 8.67 0.2264 6.68 0.1127 5.81 0.0617 10.27 0.3179 8.66 0.2282 5.95 0.0714

+ ADV 17.33 0.6046 14.68 0.509 12.30 0.4046 15.76 0.5228 13.91 0.4445 12.73 0.3859

Intermediate 6.0224 0.0509 5.8166 0.0366 5.7199 0.0315 6.0225 0.0509 5.8158 0.0365 5.7173 0.0314

+ ADV 24.02 0.8213 22.01 0.7775 20.15 0.7286 24.02 0.8213 21.98 0.7770 20.15 0.7286

Intermediate + ReLU 13.87 0.4093 11.63 0.3128 10.29 0.2538 13.87 0.4094 11.62 0.3127 10.29 0.2542

+ ADV 23.90 0.8046 22.46 0.7637 21.85 0.7484 23.91 0.8046 22.47 0.7638 21.84 0.7481

MODEL NO ATTACK 5 iterations 10 iterations 20 iterations
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Figure 3. Images reconstructed by different models after CosPGD attack. See Figure A1 (Appendix B) to compare over all considered

models.
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color mixing that gets worse as the attack strength increases.

While aliasing and color artifacts are significantly reduced

with adversarial training (please refer to Figure 3), the re-

constructions of NAFNet and the Baseline network are still

affected by residual ringing artifacts. Interestingly, the qual-

ity of images reconstructed by Restormer after adversarial

training is significantly better, as indicated by its perfor-

mance in terms of PSNR and SSIM in Table 2. At a low

amount of adversarial attack iterations, the artifacts present

in the images reconstructed by Restormer are negligible. To

ascertain that these observations are not specific to the ad-

versarial attack itself, we visualize the images reconstructed

after the PGD attack in Figure A2 and observe a similar phe-

nomenon. This accentuates the strength of the architectural

design of Restormer and casts doubts over that of the net-

works proposed by [7].

5. Analysis and Discussion
Following we discuss the design choices made in

NAFNet and the Baseline network that constrain the per-

formance of the network against adversarial attacks, despite

employing adequate defense techniques.

5.1. Analyzing Intermediate networks

First, we study the Intermediate network to ascertain if

the spectral artifacts introduced by NAFNet in its recon-

structed images were due to replacing a non-linear acti-

vation function with a Simple Gate. This is because the

channel-wise multiplication would best explain the color

mixing artifact and the inherent wrong sub-sampling dur-

ing this operation and would account for the accentuated

aliasing artifacts. Further to understand the influence of

the non-linear activation, we also train the Intermediate net-

work with ReLU activation, referred to as Intermediate +
ReLU.

We report the findings on the Intermediate networks in

Table A1. Here we observe that the Intermediate network

performs marginally worse than even NAFNet, especially

under adversarial attacks. Additionally, in Figure A1, we

visualize the images reconstructed by the Intermediate net-

work. Firstly, the clean images (unperturbed) have not been

deblurred significantly. Secondly, even under mild adver-

sarial attacks, the quality of the reconstructed images is

abysmal. We observe severe checkerboard patterns, alias-

ing, and color mixing in all images reconstructed by the In-

termediate network under adversarial attack. Thus, to better

understand the performance of the Intermediate network in

comparison to the Baseline network and NAFNet, we per-

form significantly weaker adversarial attacks. To this effect,

we use the CosPGD attack but with ε ≈ 2
255 , and consider

attack iterations ∈ {1, 3, 5}. We again use α = 0.01.

We report the performance of the Intermediate networks

in Table 3. Interestingly, we observe that after one ad-

Table 3. Comparison of performance of the Baseline network,

NAFNet, and Intermediate networks against significantly weak

CosPGD attack. For this comparison we use ε ≈ 2
255

and

α = 0.01 and consider fewer attack steps i.e. iterations ∈{1, 3, 5}

Architecture

CosPGD

1 attack itrs 3 attack itrs 5 attack itrs

PSNR SSIM PSNR SSIM PSNR SSIM

Baseline 21.38 0.7520 17.19 0.6356 16.99 0.6316

NAFNet 22.54 0.7883 18.80 0.6948 18.46 0.6835

Intermediate 25.14 0.8410 10.37 0.2940 8.56 0.1812

+ ADV 25.47 0.8555 25.16 0.8501 25.32 0.8555

Intermediate + ReLU 23.96 0.8112 20.96 0.7458 21.5777 0.7594

+ ADV 26.11 0.8616 25.10 0.8459 24.86 0.8413

versarial attack iteration, the Intermediate network is sig-

nificantly outperforming both the Baseline network and

NAFNet. However, the Intermediate network is unable to

retain this superior performance, and its performance sig-

nificantly drops as we increase the attack strength (attack

iterations). Additionally, in Figure 4 we observe the in-

troduction of the same spectral artifacts for the Intermedi-

ate network as those observed in Figure A1 and Figure A2

(please refer to Section B). The intensity of the spectral arti-
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Figure 4. Comparing images reconstructed by different models af-

ter a significantly weaker CosPGD attack as ε ≈ 2
255

.

facts increases as we increase the attack strength. This phe-

nomenon is similar to the performance of NAFNet, which

performs admirably on clean samples and under weak ad-

versarial attacks but begins to perform significantly worse

as the attack strength increases. This indicates that even

smoothed activation functions in the NAFNet architecture

instead of Simple Gate produce strong spectral artifacts in

the reconstructed images.
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This is in striking contrast to using a non-smooth non-

linear activation function, ReLU. Interestingly, we observe

that Intermediate+ReLU is significantly more robust, and

the degradation in its performance with attack strength is

significantly lower than all considered networks, includ-

ing Restormer. In Figures A1, A2 &4 we observe that the

images reconstructed by Intermediate+ReLU, while blurry,

have significantly fewer artifacts for reasonable values of ε.

Figure 5. Two different randomly chosen images reconstructed by

Intermediate + ReLU after 5 iterations of CosPGD attack with

significantly higher ε ≈ 20
255

. We observe strong spectral artifacts

similar to Intermediate network in the recovered images.

Under adversarial attacks, the images reconstructed by

Intermediate+ReLU do not have spectral artifacts similar

to Intermediate network or NAFNet, but more similar to

Restormer and the Baseline. It is only at severely higher

ε ≈ 20
255 (refer Fig. 5) that spectral artifacts similar to

those produced by Intermediate network appear in the re-

constructed images from Intermediate+ReLU. Thus, the

smoothening of feature maps by the conjunction of Simpli-

fied Channel Attention and GeLU, and Simple Gate could

be attributed to the introduction of some peculiar spectral

artifacts and loss in robustness.Using a non-smoothed non-

linear activation function like ReLU appears to be an effec-

tive mitigation technique.

Additionally, as reported in Table A1 we observe the ad-

versarial robustness of both the Intermediate network and

Intermediate+ReLU significantly increases after FGSM

training, and is comparable to Restormer. This significant

improvement in adversarial performance is also visible at

lower ε attacks, please refer to Table 3 and visually shown

in Figure 4. Thus, as observed before, adversarial training is

a fix to reduce artifacts, even for the Intermediate network.

5.2. Superiority of Restormer

In their work, [7] attempt to reduce model complexity

while retaining the performance of the Restormer. However,

as shown in our work this significantly degrades the gener-

alization ability of the consequent models. As larger mod-

els tend to have a better trade-off between robustness and

accuracy [22, 24], the reduced model capacity in the Base-

line and NAFNet could contribute to the reduced robust-

ness. While reducing model complexity is certainly impor-

tant and desirable, to maintain robustness it requires a more

careful and systematic pruning of networks [59, 41, 24] than

simply dropping components. Apart from the model’s com-

plexity in terms of the number of parameters, the attention

mechanism itself could be crucial for robustness.

While the Restormer uses a multi-headed self-attention

mechanism, both the Baseline network and NAFNet use

variants of channel-attention (NAFNet uses the simplified

channel-attention proposed by [7]). As shown by [4], the

self-attention module of vision Transformers significantly

aids the Transformer based models to improve their robust-

ness. Additionally, it helps the model better utilize defense

strategies such as additional training, distillation, etc. A

similar phenomenon is observed in Table 2, as Restormer,

a vision transformer-based model with a multi-headed self-

attention module is able to better utilize adversarial training

compared to the Baseline network and NAFNet.

Limitations. Adversarial training and design choices

like the use of smoothed or non-smoothed activation func-

tions against using Simple Gates certainly have a significant

impact on the performance of the considered image restora-

tion models. However, there still is a considerable gap in

the clean performance of the considered models. While the

fixes work in increasing adversarial robustness and removal

of spectral artifacts the images are far from ideal restora-

tion. As observed, the restored images after the fixes are

significantly blurry. This is a limitation of this work, as this

work was focused on the removal of spectral artifacts and

better adversarial robustness. This work is a step towards

finding a fix and not an absolute fix.

6. Conclusion
Despite recent methods outperforming baselines for var-

ious vision tasks, for a method to have a significant con-

tribution to real-world applications, it must be reliable and

robust. Thus in this work, we highlight this shortcoming

of recently proposed Transformer based image restoration

models. While the models proposed by [7] perform sat-

isfactorily for image deblurring on non-perturbed samples,

they fail to generalize when slight adversarial perturbations

are added to the blurred images. We acknowledge that the

reduction in model complexity compared to Restormer is a

step in the right direction, however, in this case, it comes

at the expense of model robustness. Therefore, we addi-

tionally employ adversarial training in an attempt to fix this

shortcoming while also improving the quality of the recon-

structed images. We observe that adversarial training is able

to reduce the spectral artifacts and also results in significant

improvements in the adversarial robustness of the image

restoration models. However, the extent of the improve-

ment varied with the architectural design decisions. Thus

lastly, we investigate the design decisions that might lead

to the occurrence of spectral artifacts and loss in robustness

for the methods and find an interesting ablation concerning

the type of activation functions used when downsampling.
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